Учебная работа № 89687. «Контрольная Эконометрика, 2 вариант. (Задача)

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Учебная работа № 89687. «Контрольная Эконометрика, 2 вариант. (Задача)

Количество страниц учебной работы: 4
Содержание:
«ВАРИАНТ 2
1. Рассчитайте параметры уравнения линейной регрессии.
2. Оцените качество уравнения с помощью средней ошибки аппроксимации.
3. Оцените статистическую надежность регрессионного моделирования с помощью t-критерия Стьюдента.
4. Рассчитайте ожидаемое значение результата, если прогнозное значение фактора увеличится на 4% от его среднего уровня. Определите доверительный интервал прогноза.
5. Оцените полученные результаты, оформите выводы.

Таблица 5

Порядковый № региона Район
Потребительские расходы
на душу населения,
тыс. руб., у Денежные доходы
на душу населения,
тыс. руб., х
Восточно-Сибирский
1 Республика Бурятия 408 524
2 Республика Тыва 249 371
3 Республика Хакасия 253 453
4 Красноярский край 580 1006
5 Иркутская область 651 997
6 Усть-Ордынский автон. округ 139 217
7 Читинская область 322 486
Дальневосточный
8 Республика Саха 899 1989
9 Еврейская автон. область 330 595
10 Чукотский автон. округ 446 1550
11 Приморский край 642 937
12 Хабаровский край 542 761
13 Амурская область 504 767
14 Камчатская область 861 1720
15 Магаданская область 707 1735
16 Сахалинская область 557 1052
Fтабл.= 4,60 (?=0,05) ?у = 211,03 ?х = 522,97
»

Стоимость данной учебной работы: 585 руб.Учебная работа № 89687.  "Контрольная Эконометрика, 2 вариант. (Задача)
Форма заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант


    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским

    соглашением и даю согласие на обработку своих персональных данных.


    Подтвердите, что Вы не бот

    Выдержка из похожей работы

    год
    1, Цель работы

    Цель контрольной работы — демонстрация полученных теоретических знаний и приобретенных практических навыков по эконометрике — как синтезу экономической теории, экономической статистики и математики, в том числе исследование линейных моделей парной (ЛМПР) и множественной регрессии (ЛММР), трендовых моделей, методом наименьших квадратов (МНК),
    Для проведения расчетов использовалось приложение к ПЭВМ типа EXCEL,
    2, Исследование линейных моделей парной (ЛМПР) и
    множественной регрессии (ЛММР) методом наименьших
    квадратов (МНК),

    2,1 Контрольная задача № 1

    2,1,1, Исследуем зависимость производительности труда Y (т/ч) от уровня механизации Х (%),
    Исходные данные для 14 однотипных предприятий приводятся в таблице 1:
    Таблица 1

    xi

    32

    30

    36

    40

    41

    47

    56

    54

    60

    55

    61

    67

    69

    76

    yi

    20

    24

    28

    30

    31

    33

    34

    37

    38

    40

    41

    43

    45

    48

    2,1,2 Матричная форма записи ЛМПР (ЛММР):
    Y^ = X* A^ (1), где А^ — вектор-столбец параметров регрессии;
    xi1 — предопределенные (объясняющие) переменные, n = 1;
    ранг матрицы X = n + 1= 2 < k = 14 (2), Исходные данные представляют в виде матриц, ( 1 32 ) (20 ) ( 1 30) (24 ) ( 1 36) (28 ) ( 1 40 ) (30 ) (1 41 ) (31 ) ( 1 47 ) (33) X = (1 56) Y = (34 ) (1 54) (37 ) (1 60 ) (38 ) (1 55 ) (40 ) ( 1 61 ) (41 ) ( 1 67 ) (43) (1 69 ) (45 ) ( 1 76 ) (48 ) Значение параметров А^ = (а0, а1) T и 2 - нам неизвестны и их требуется определить (статистически оценить) методом наименьших квадратов, Так как матрица Х, по условию, является прямоугольной, а обратную матрицу Х-1 можно рассчитать только для квадратной матрицы, то произведем небольшие преобразования матричного уравнения типаY = X *A, умножив левую и правую части на транспонированную матрицу Х Т, Получим XT* X * A^ = X T * Y , откуда A^ = (XT * X ) -1 *( XT * Y) (3), где (XT * X ) -1 - обратная матрица, 2,1,2, Решение, а) Найдем транспонированную матрицу ХТ : ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) XT = ( 32 30 36 40 41 47 56 54 60 55 61 67 69 76 ) в) Находим произведение матриц XT *X : ( 14 724 ) XT * X = ( 724 40134) г) Находим произведение матриц XT * Y: ( 492 ) XT * Y = ( 26907 ) д) Вычисляем обратную матрицу ( XT * X) -1 : ( 1,064562 -0,0192 ) ( XT * X) -1 = (-0,0192 0,000371) е) Умножаем обратную матрицу ( XT * X) -1 на произведение матриц (XT *Y) и получаем вектор- столбец A^ = (a 0 , a 1)T : ( 7,0361 ) A^ = ( XT * X) -1 * (XT * Y) = ( 0,543501), Уравнение парной регрессии имеет следующий вид: уi^ = 7,0361 + 0,543501* xi1 (4), уi^ (60) = 7,0361 + 0,543501*60 = 39, 646, 2,1,3 Оценка качества найденных параметров Для оценки качества параметров A применим коэффициент детерминации R2 , Величина R2 показывает, какая часть (доля) вариации зависимой переменной обусловлена объясняющей переменной, Чем ближе R2 к единице, тем лучше регрессия аппроксимирует экспериментальные данные, Q = ?(yi - y?)2 (5) - общая сумма квадратов отклонений зависимой переменной от средней; QR = ?(y^i - y?)2 (6) - сумма квадратов, обусловленная регрессией; Qе = ?(yi - y^i)2 (7) - остаточная сумма квадратов, характеризующая влияние неучтенных факторов; Q = QR + Qе (8), Q = 847,714; QR = 795,453; Qе = 52,261"

    Рейтинг@Mail.ru Яндекс.Метрика