Учебная работа № 89065. «Контрольная Экономика (задачи 2-5)

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Учебная работа № 89065. «Контрольная Экономика (задачи 2-5)

Количество страниц учебной работы: 3
Содержание:
«Задача 2. 1
Задача 3. 1
Задача 4. 1
Задача 5. 2

Задача 2. 1
Какая сумма будет накоплена через год, если ежеквартально в конце каждого квартала вносится сумма 20 тыс. руб.? Ставка по вкладам — 16% годовых.

Задача 3. 1
Переменные затраты составляют 6 руб. на единицу продукции. Постоянные затраты — 40 руб. за год. Цена реализации единицы продукции равна 10 руб. Предприятие хотело бы получить прибыль 60 руб. Каков должен быть объем реализации продукции для получения планируемой прибыли?

Задача 4. 1
Организация занимается реализацией тракторов. Суммарные переменные производственные затраты составляют 9000 тыс. руб.; издержки обращения (в том числе коммерческие, общие и административные расходы) составили 1600 тыс. руб.; совокупные постоянные расходы организации за год — 800 тыс. руб. Предприятию установлен план по прибыли — 1200 тыс. руб. За год было продано 40 тракторов.
Требуется рассчитать базовую цену трактора на основе метода валовой прибыли.

Задача 5. 2
Предприятие изготавливает электроплиты и продает их оптом по цене 12000 руб. за единицу. Информация о затратах предприятия в расчете на единицу продукции приведена в таблице.
Показатели затрат на одно изделие
№ п/п Статьи затрат Сумма, руб.
1 Прямые материальные затраты 3000
2 Прямые затраты на рабочую силу 2000
3 Переменные косвенные затраты 1000
4 Итого переменных затрат 6000
5 Постоянные затраты 2000
Всего затрат 8000
Производственная мощность предприятия — 150 ед. электроплит в месяц. Фактический объем производства за месяц составляет 100 ед., т.е. мощности загружены не полностью. Предприятие получает предложение подписать контракт на производство дополнительной партии электроплит (20 ед.) по цене 7000 руб. Оцените результат принятия этого предложения.
»

Стоимость данной учебной работы: 585 руб.Учебная работа № 89065.  "Контрольная Экономика (задачи 2-5)
Форма заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант


    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским

    соглашением и даю согласие на обработку своих персональных данных.


    Подтвердите, что Вы не бот

    Выдержка из похожей работы

    И, Лобачевского»
    Специальность «Государственное и муниципальное управление»
    КОНТРОЛЬНАЯ РАБОТА
    по дисциплине: Основы математического моделирования социально-экономических процессов
    Выполнил студент 2 курса заочной формы обучения
    г, Шахунья
    2013 г,
    ЗАДАНИЕ №1
    Модель межотраслевой экономики — модель Леонтьева,
    Задача 1, Даны коэффициенты прямых затрат aij и конечный продукт Yi для двухотраслевой экономической системы, Данные приведены в таблице,
    1, Определить коэффициенты полных затрат, вектор валового выпуска, межотраслевые поставки продукции;
    2, Проверить продуктивность матрицы коэффициентов прямых затрат;
    3, Составить и заполнить таблицу межотраслевого баланса,
    4, Найти матрицу косвенных затрат,

    Отрасль

    Коэффициенты прямых затрат aij

    Конечный продукт Yi

    1

    2

    1

    0,1*m

    0,1

    1000

    2

    0,3

    0,1*n

    500+100*n

    Подставив данные варианта m = 4, n = 4, получим:

    Отрасль

    Коэффициенты прямых затрат aij

    Конечный продукт Yi

    1

    2

    1

    0,4

    0,1

    1000

    2

    0,3

    0,4

    900

    Из таблицы получаем:
    0,4 0,1 1000
    А= 0,3 0,4 , Y= 900 ,
    Найдем матрицу полных затрат:
    Находим определитель:
    А также матрицу миноров:
    А затем матрицу алгебраических дополнений:
    И соответствующую ей транспонированную матрицу:
    Что позволяет найти обратную матрицу — матрицу полных затрат:
    Так как все элементы матрицы полных затрат неотрицательны, а также сумма элементов матрицы А по всем строкам и столбцам <1, то матрица коэффициентов прямых затрат является продуктивной, Найдем вектор валового выпуска: Помножив первое уравнение на 6 и сложив первое уравнения со вторым, получим: Откуда найдем: Межотраслевые поставки считаем по формуле: В итоге таблица межотраслевого баланса выглядит следующим образом: Отрасль Коэффициенты прямых затрат aij Конечный продукт Yi Валовой выпуск 1 2 1 0,3 0,1 1000 2090,909 2 0,3 0,4 900 2545,454 Найдем матрицу косвенных затрат: ЗАДАНИЕ №2 Линейное программирование, Задача оптимального производства продукции Задача 2, Предприятие планирует выпуск двух видов продукции: I и II, На производство расходуется три вида сырья: A, B и C, Потребность aij на каждую единицу j-го вида продукции i-го вида сырья, запас bi соответствующего вида сырья и прибыль cj от реализации единицы j-го вида продукции заданы таблицей: Вид сырья Виды продукции Запас сырья I II A a11=n a12=2 b1=mn + 5n B a21=1 a22=1 b2=m + n +3 C a31=2 a32=m+1 b3=mn+4m+n+4 Прибыль c1=m+2 c2=n+1 План (ед,) x1 x2 затрата индексный решение excel Подставив данные варианта, получим: Вид сырья Виды продукции Запас сырья I II A 4 2 36 B 1 1 11 C 2 5 40 Прибыль 6 5 План (ед,) x1 x2 Целевая функция решения имеет следующий вид: Система ограничений на целевую функцию: Воспользовавшись сервисом «поиск решения» в программе MS Excel, получим оптимальный план производства продукции: Определим максимальное значение целевой функции F(X) = 6x1 + 5x2 при следующих условиях-ограничений, 4x1 + 2x2?36 x1 + x2?11 2x1 + 5x2?40 x1 + x2?4 Для построения первого опорного плана систему неравенств приведем к системе уравнений путем введения дополнительных переменных (переход к канонической форме), 4x1 + 2x2 + 1x3 + 0x4 + 0x5 + 0x6 = 36 1x1 + 1x2 + 0x3 + 1x4 + 0x5 + 0x6 = 11 2x1 + 5x2 + 0x3 + 0x4 + 1x5 + 0x6 = 40 1x1 + 1x2 + 0x3 + 0x4 + 0x5-1x6 = 4 Введем искусственную переменную: в 4-м равенстве вводим переменную x7; 4x1 + 2x2 + 1x3 + 0x4 + 0x5 + 0x6 + 0x7 = 36 1x1 + 1x2 + 0x3 + 1x4 + 0x5 + 0x6 + 0x7 = 11 2x1 + 5x2 + 0x3 + 0x4 + 1x5 + 0x6 + 0x7 = 40 1x1 + 1x2 + 0x3 + 0x4 + 0x5-1x6 + 1x7 = 4 Для постановки задачи на максимум целевую функцию запишем так: F(X) = 6x1+5x2 - Mx7 > max
    Из уравнения выражаем искусственную переменную:
    x7 = 4-x1-x2+x6
    которую подставим в целевую функцию:
    F(X) = (6+M)x1+(5+M)x2+(-M)x6+(-4M) > max
    Решим систему уравнений относительно базисных переменных:
    x3, x4, x5, x7,
    Полагая, что свободные переменные равны 0, получим первый опорный план:
    X1 = (0,0,36,11,40,0,4)

    Базис

    B

    x1

    x2

    x3

    x4

    x5

    x6

    x7

    x3

    36

    4

    2

    1

    0

    0

    0

    0

    x4

    11

    1

    1

    0

    1

    0

    0

    0

    x5

    40

    2

    5

    0

    0

    1

    0

    0

    x7

    4

    1

    1

    0

    0

    0

    -1

    1

    F(X0)

    -4M

    -6-M

    -5-M

    0

    0

    0

    M

    0

    Текущий опорный план неоптимален, так как в индексной строке находятся отрицательные коэффициенты, В качестве ведущего выберем столбец, соответствующий переменной x1, так как это наибольший коэффициент по модулю, Вычислим значения Di по строкам как частное от деления: bi / ai1 и из них выберем наименьшее, 4-ая строка является ведущей, Разрешающий элемент равен 1 и находится на пересечении ведущего столбца и ведущей строки,

    Базис

    B

    x1

    x2

    x3

    x4

    x5

    x6

    x7

    min

    x3

    36

    4

    2

    1

    0

    0

    0

    0

    9

    x4

    11

    1

    1

    0

    1

    0

    0

    0

    11

    x5

    40

    2

    5

    0

    0

    1

    0

    0

    20

    x7

    4

    1

    1

    0

    0

    0

    -1

    1

    4

    F(X1)

    -4M

    -6-M

    -5-M

    0

    0

    0

    M

    0

    0

    Получаем новую симплекс-таблицу:

    Базис

    B

    x1

    x2

    x3

    x4

    x5

    x6

    x7

    x3

    20

    0

    -2

    1

    0

    0

    4

    -4

    x4

    7

    0

    0

    0

    1

    0

    1

    -1

    x5

    32

    0

    3

    0

    0

    1

    2

    -2

    x1

    4

    1

    1

    0

    0

    0

    -1

    1

    F(X1)

    24

    0

    1

    0

    0

    0

    -6

    6+M

    Текущий опорный план неоптимален, так как в индексной строке находятся отрицательные коэффициенты, В качестве ведущего выберем столбец, соответствующий переменной x6, так как это наибольший коэффициент по модулю, Вычислим значения Di по строкам как частное от деления: bi / ai6 и из них выберем наименьшее, 1-ая строка является ведущей, Разрешающий элемент равен 4 и находится на пересечении ведущего столбца и ведущей строки»

    Рейтинг@Mail.ru Яндекс.Метрика