Учебная работа № 89012. «Контрольная Эконометрика. Задачи 1, 2, 4

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Учебная работа № 89012. «Контрольная Эконометрика. Задачи 1, 2, 4

Количество страниц учебной работы: 16
Содержание:
«Вариант 1
Задача 1. Бюджетное обследование 10 случайным образом отобранных семей дало следующие результаты:
Номер семьи 1 2 3 4 5 6 7 8 9 10
Реальный доход семьи (т.руб.) 5.0 4.5 4.2 7.5 3.5 6.2 7.7 6.0 5.9 3.8
Реальный расход семьи на продовольственные товары (т.руб.) 3.0 2.6 1.5 3.4 1.8 5.0 5.2 4.3 3.6 2.1
1) Постройте поле корреляции результата и фактора и сформулируйте гипотезу о форме связи.
2) Определите параметры уравнений парной линейной регрессии и дайте интерпретацию коэффициента регрессии b. Рассчитайте линейный коэффициент корреляции и поясните его смысл. Определите коэффициент детерминации и дайте его интерпретацию.
3) На уровне значимости 0,95 оцените статистическую значимость коэффициента регрессии b и коэффициента корреляции. Сделайте выводы.
4) На уровне значимости 0,95 оцените статистическую значимость уравнения регрессии в целом. Сделайте выводы.
5) На уровне значимости 0,05 проверьте гипотезу о гетероскедастичности остатков модели с помощью критерия Спирмена.
6) На уровне значимости 0,05 проверьте предположение об автокорреляции остатков.
7) С вероятностью 0,9 постройте доверительный интервал ожидаемого значения результативного признака, если факторный признак увеличится на 10% от своего среднего значения.
Задача 2. Изучается влияние изменения объема промышленного производства и среднедушевого дохода на товарооборот. Для этого по 10 регионам РФ были получены следующие данные:
№ п/п Розничный товарооборот (в % к пред. году), y Объем промышленного производства (в % к пред. году), х1 Среднедушевой денежный доход (в % к пред. году), х2
1 89 85 88
2 75 70 85
3 82 86 81
4 84 80 87
5 91 97 87
6 92 79 110
7 89 92 102
8 107 99 105
9 89 83 94
10 87 77 92
1. Постройте линейное уравнение множественной регрессии и поясните экономический смысл его параметров
2. Определите парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции, сделайте выводы.
3. Определите коэффициенты эластичности и стандартизованные коэффициенты регрессии. Сделайте выводы.
4. На уровне значимости 0,05 оцените статистическую значимость уравнения регрессии в целом.
Задача 4. Имеются следующие данные о квартальных объемах реализации нового продукта предприятием оптовой торговли:
Период времени 1 2 3 4 5 6 7 8 9
Объем реализации, тыс. шт. 14 135 297 498 737 1016 1336 1700 2101
1) Определите коэффициент автокорреляции первого порядка и дайте его интерпретацию
2) Обоснуйте выбор вида уравнения тренда и определите его параметры
3) Дайте прогноз объема реализации нового продукта на ближайший следующий квартал

»

Стоимость данной учебной работы: 585 руб.Учебная работа № 89012.  "Контрольная Эконометрика. Задачи 1, 2, 4
Форма заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант


    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским

    соглашением и даю согласие на обработку своих персональных данных.


    Подтвердите, что Вы не бот

    Выдержка из похожей работы

    Данные приведены в табл,1,4
    Таблица 1,4

    Мес,

    Задача 1

    Задача 2

    Задача 3

    Задача 4

    Задача 5

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    1

    13,0

    37,0

    13,2

    37,2

    22,5

    46,0

    22,5

    29,0

    23,0

    22,8

    2

    16,4

    60,0

    15,9

    58,2

    25,5

    54,0

    25,8

    36,2

    26,8

    27,5

    3

    17,0

    60,9

    16,2

    60,8

    19,2

    50,2

    20,8

    28,9

    28,0

    34,5

    4

    15,2

    52,1

    15,4

    52,0

    13,5

    43,8

    15,2

    32,4

    18,4

    26,4

    5

    14,2

    40,1

    14,2

    44,6

    25,4

    78,6

    25,8

    49,7

    30,4

    19,8

    6

    10,5

    30,4

    11,0

    31,2

    17,8

    60,2

    19,4

    38,1

    20,8

    17,9

    7

    20,0

    43,0

    21,1

    26,4

    18,0

    50,2

    18,2

    30,0

    22,4

    25,2

    8

    12,0

    32,1

    13,2

    20,7

    21,0

    54,7

    21,0

    32,6

    21,8

    20,1

    9

    15,6

    35,1

    15,4

    22,4

    16,5

    42,8

    16,4

    27,5

    18,5

    20,7

    10

    12,5

    32,0

    12,8

    35,4

    23,0

    60,4

    23,5

    39,0

    23,5

    21,4

    11

    13,2

    33,0

    14,5

    28,4

    14,6

    47,2

    18,8

    27,5

    16,7

    19,8

    12

    14,6

    32,5

    15,1

    20,7

    14,2

    40,6

    17,5

    31,2

    20,4

    24,5

    Задание:
    Рассчитайте параметры уравнений регрессий и , Оцените тесноту связи с показателем корреляции и детерминации,
    Рассчитайте средний коэффициент эластичности и дайте сравнительную оценку силы связи фактора с результатом,
    Рассчитайте среднюю ошибку аппроксимации и оцените качество модели,
    С помощью F-статистики Фишера (при ) оцените надежность уравнения регрессии,
    Рассчитайте прогнозное значение , если прогнозное значение фактора увеличится на 5% от его среднего значения, Определите доверительный интервал прогноза для ,
    Расчеты должны быть подробны, как показано в примере 1, и сопровождены пояснениями,
    Решение
    Составим таблицу расчетов для линейной регрессии y = a + bx + е (таблица построена в MS Exсel),
    Таблица 1,

    x

    x2

    y

    xy

    y2

    y — ?

    x — x~

    (y — ?) 2

    (x — x~) 2

    y

    y — y

    (y — y) 2

    A (%)

    22,8

    519,84

    23

    524,4

    529

    0,44

    -0,58

    0, 20

    0,34

    22,37

    0,63

    0,40

    2,76

    27,5

    756,25

    26,8

    737

    718,2

    4,24

    4,12

    17,99

    16,95

    23,91

    2,89

    8,32

    10,77

    34,5

    1190,3

    28

    966

    784

    5,44

    11,12

    29,61

    123,58

    26,22

    1,78

    3,16

    6,35

    26,4

    696,96

    18,4

    485,8

    338,6

    -4,16

    3,02

    17,29

    9,10

    23,55

    -5,15

    26,55

    28,00

    19,8

    392,04

    30,4

    601,9

    924,2

    7,84

    -3,58

    61,49

    12,84

    21,38

    9,02

    81,40

    29,68

    17,9

    320,41

    20,8

    372,3

    432,6

    -1,76

    -5,48

    3,09

    30,07

    20,75

    0,05

    0,00

    0,23

    25,2

    635,04

    22,4

    564,5

    501,8

    -0,16

    1,82

    0,03

    3,30

    23,16

    -0,76

    0,57

    3,38

    20,1

    404,01

    21,8

    438,2

    475,2

    -0,76

    -3,28

    0,58

    10,78

    21,48

    0,32

    0,10

    1,48

    20,7

    428,49

    18,5

    383

    342,3

    -4,06

    -2,68

    16,47

    7, 20

    21,67

    -3,17

    10,08

    17,16

    21,4

    457,96

    23,5

    502,9

    552,3

    0,94

    -1,98

    0,89

    3,93

    21,90

    1,60

    2,54

    6,79

    19,8

    392,04

    16,7

    330,7

    278,9

    -5,86

    -3,58

    34,32

    12,84

    21,38

    -4,68

    21,88

    28,01

    24,5

    600,25

    20,4

    499,8

    416,2

    -2,16

    1,12

    4,66

    1,25

    22,93

    -2,53

    6,38

    12,38

    У

    280,6

    6793,5

    270,7

    6406

    6293

    0,00

    0,00

    186,61

    232,18

    0,00

    161,40

    146,99

    У/n

    23,38

    566,13

    22,56

    533,86

    524,43

    13,45

    12,25

    у

    4,399

    3,943

    у2

    19,35

    15,55

    Отсюда получаем коэффициенты a и b:
    То есть, уравнение линейной регрессии в нашем случае имеет вид:
    y = 14,85 + 0,3295•x,

    Рассчитаем коэффициент корреляции:
    rxy = b•уx / уy = 0,329 • 4,399/3,943 = 0,368

    Малое значение коэффициента корреляции означает, что связь между признаком y и фактором x плохая,
    Вычислим значение F-критерия Фишера:

    и сравним его с табличным при б=0,05, н1 = 1, н2 = 10: Fтабл = 2,228

    Поскольку Fтабл > F, то гипотеза H0 о статистической незначимости параметра b принимается,
    Средняя ошибка аппроксимации
    также выходит за допустимые пределы 8 — 10%, что опять говорит о низкой надежности модели,
    Попробуем для сравнения модель y = a + b•vx + е, Для нее таблица параметров имеет вид:
    Таблица 2 (начало)

    x

    u = ?x

    u2

    y

    uy

    y2

    17,9

    4,23

    17,90

    20,80

    88,00

    432,64

    19,8

    4,45

    19,80

    30,40

    135,27

    924,16

    19,8

    4,45

    19,80

    16,70

    74,31

    278,89

    20,1

    4,48

    20,10

    21,80

    97,74

    475,24

    20,7

    4,55

    20,70

    18,50

    84,17

    342,25

    21,4

    4,63

    21,40

    23,50

    108,71

    552,25

    22,8

    4,77

    22,80

    23,00

    109,82

    529,00

    24,5

    4,95

    24,50

    20,40

    100,97

    416,16

    25,2

    5,02

    25, 20

    22,40

    112,45

    501,76

    26,4

    5,14

    26,40

    18,40

    94,54

    338,56

    27,5

    5,24

    27,50

    26,80

    140,54

    718,24

    34,5

    5,87

    34,50

    28,00

    164,46

    784,00

    У

    57,79

    280,60

    270,70

    1310,99

    6293,15

    Среднее значение

    4,82

    23,38

    22,56

    109,25

    524,43

    Таблица 2 (окончание)

    y — ?

    u — ?

    (y — ?) 2

    (u — ?) 2

    y

    y — y

    (y — y) 2

    A (%)

    -1,76

    -0,58

    3,09

    0,34

    20,69

    0,11

    0,01

    0,55

    7,84

    -0,37

    61,49

    0,13

    21,39

    9,01

    81,25

    29,65

    -5,86

    -0,37

    34,32

    0,13

    21,39

    -4,69

    21,96

    28,06

    -0,76

    -0,33

    0,58

    0,11

    21,49

    0,31

    0,09

    1,41

    -4,06

    -0,27

    16,47

    0,07

    21,71

    -3,21

    10,28

    17,33

    0,94

    -0, 19

    0,89

    0,04

    21,95

    1,55

    2,40

    6,59

    0,44

    -0,04

    0, 20

    0,00

    22,43

    0,57

    0,33

    2,49

    -2,16

    0,13

    4,66

    0,02

    22,99

    -2,59

    6,69

    12,68

    -0,16

    0, 20

    0,03

    0,04

    23,21

    -0,81

    0,66

    3,62

    -4,16

    0,32

    17,29

    0,10

    23,59

    -5, 19

    26,94

    28,21

    4,24

    0,43

    17,99

    0,18

    23,93

    2,87

    8,24

    10,71

    5,44

    1,06

    29,61

    1,12

    25,95

    2,05

    4,22

    7,34

    У

    0,00

    0,00

    186,61

    2,30

    0,00

    163,08

    148,65

    У/n

    13,59

    12,39

    Здесь мы вводим переменную u = vx и получаем линейную модель относительно x и u:
    u = a + b•u + е,
    Найдем коэффициенты a и b:
    ,
    Рассчитаем коэффициент корреляции:
    ruy = b • уu /уy = 3, 203 • 0,437/ 3,943 = 0,355104

    Мы получили значение коэффициента корреляции еще хуже, чем в предыдущем случае,
    Проверим значение F-критерия Фишера:
    И снова расчетное значение еще хуже,
    Средняя о
    шибка аппроксимации также оказалась хуже, чем в линейной модели:
    Линейная модель оказалась надежнее (хотя тоже неудовлетворительная) и поэтому последующие расчеты мы будем делать для нее,
    Рассмотрим гипотезу H0 о статистической незначимости основных параметров модели: H0: {a = b = rxy = 0} и найдем для нее табличное значение распределения Стьюдента:
    tтабл (б =0,05, н = 10) = 2,228,

    Определим ошибки ma, mb и mr:
    Оценим значимость параметров:
    ta = a/ma = 7,139/6,27 = 2,368 > tтабл,
    tb = b/mb = 3, 202/0,2637 = 1,25 < tтабл tr = r/mr = 0,368/0,294 = 1,25 < tтабл Таким образом, параметры модели незначимо отличаются от нуля, и, следовательно, модель нельзя использовать для прогноза, Чтобы окончательно убедиться в этом, попробуем оценить доверительный интервал прогноза при отклонении хпрог от среднего значения на 5% для доверительной вероятности 0,01, Для yprog = a + b•xprog = 22,94,my = 4, 193, При б = 0,01 и n = 10 tтабл = 3,169,tтабл • my =13,29, Следовательно, доверительным интервалом будет (22,94 - 13,29, 22,94 +13,29) или 9,656 < yprog < 36,231, Таким образом, сделанный прогноз абсолютно ненадежен и совершенно неточен, Контрольное задание № 2 Задача 2 Имеются данные о деятельности крупнейших компаний в течение двенадцати месяцев 199Х года"

    Рейтинг@Mail.ru Яндекс.Метрика