Учебная работа № 88992. «Контрольная Эконометрика. Вариант 4, задания 1-3

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Учебная работа № 88992. «Контрольная Эконометрика. Вариант 4, задания 1-3

Количество страниц учебной работы: 33
Содержание:
«Задание № 1.
По данным об экономических результатах деятельности российских банков (www.finansmag.ru), по данным Банка России (www.cbr.ru/regions) и Федеральной службы государственной статистики (www.gks.ru) выполните следующие задания.
1. Проведите качественный анализ связей экономических переменных, выделив зависимую и независимую переменные.
2. Постройте поле корреляции результата и фактора.
3. Рассчитайте параметры следующих функций:
• линейной;
• степенной;
• показательной;
• равносторонней гиперболы.
4. Оцените качество каждой модели через среднюю ошибку аппроксимации и F-критерий Фишера.
5. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 15% от его среднего уровня. Определить доверительный интервал прогноза для уровня значимости ?=0,05.
6. Оценить полученные результаты, выводы оформить в аналитической записке.
Банк Собственный капитал, млн руб. Кредиты предприятиям и организациям, млн руб.
Сбербанк 209933 1073255
Внешторгбанк 72057 189842
Газпромбанк 30853 207118
Альфа-банк 25581 138518
Банк Москвы 18579 90757
Росбанк 12879 62388
Ханты-Мансийский банк 3345 4142
МДМ-банк 13887 51731
ММБ 8380 48400
Райффайзенбанк 7572 46393
Промстройбанк 9528 45580
Ситибанк 8953 33339
Уралсиб 13979 43073
Межпромбанк 28770 60154
Промсвязьбанк 5222 32761
Петрокоммерц 8373 23053
Номос-банк 6053 28511
Зенит 7373 25412
Русский стандарт 9078 3599
Транскредитбанк 3768 18506

Задание № 2.
По данным об экономических результатах деятельности российских банков(www.finansmag.ru) выполните следующие задания.
1. Постройте линейное уравнение множественной регрессии и поясните экономический смысл его параметров.
2. Определите стандартизованные коэффициенты регрессии.
3. Определите парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции.
4. Дайте оценку полученного уравнения на основе коэффициента детерминации и общего F-критерия Фишера.
5. Рассчитать прогнозное значение результата, если прогнозные значения факторов составляют 80% от их максимальных значений.
6. Оценить полученные результаты, выводы оформить в аналитической записке.
Банк Работающие активы, млн руб. Привлеченные межбанковские кредиты (МБК), % Средства предприятий и организаций, %
Сбербанк 1917403 3 19
Внешторгбанк 426484 28 25
Газпромбанк 362532 17 38
Альфа-банк 186700 14 30
Банк Москвы 157286 2 27
Росбанк 151849 4 55
Ханты-Мансийский банк 127440 0 9
МДМ-банк 111285 23 25
ММБ 104372 15 62
Райффайзенбанк 96809 27 42
Промстройбанк 85365 13 29
Ситибанк 81296 27 46
Уралсиб 76617 15 19
Межпромбанк 67649 3 7
Промсвязьбанк 54848 14 46
Петрокоммерц 53701 5 37
Номос-банк 52473 24 17
Зенит 50666 19 36
Русский стандарт 46086 52 1
Транскредитбанк 41332 7 46

Задание № 3.
По данным о средних потребительских ценах в РФ, взятым из соответствующей таблицы, выполнить следующие действия:
1. Параметры линейного, экспоненциального, степенного, гиперболического трендов, описывающих динамику доли малых предприятий. Выберите из них наилучший, используя среднюю ошибку аппроксимации и коэффициент детерминации.
2. Выбрать лучшую форму тренда и выполнить точечный прогноз на 2012,2013 и 2014 годы.
3. Определить коэффициенты автокорреляции 1, 2, 3 и 4 порядков.
4. Построить автокорреляционной функцию временного ряда. Охарактеризовать структуру этого ряда.
Год 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Газ сетевой, за месяц с человека 0,51 3,40 29,00 64,66 951 1184 2449 3,18 4,31 5,66 6,89 9,47 12,34 14,36 18,08 20,63 24,30 30,20 37,04 43,81 48,32
Учтем деноминацию 1998 года (деноминация проведена с коэффициентом 1000:1):
Год 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
Газ сетевой, за месяц с человека 0,00051 0,00340 0,02900 0,06466 0,951 1,184 2,449 3,18 4,31 5,66 6,89 9,47 12,34 14,36 18,08 20,63 24,30 30,20 37,04 43,81 48,32

»

Стоимость данной учебной работы: 585 руб.Учебная работа № 88992.  "Контрольная Эконометрика. Вариант 4, задания 1-3
Форма заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант


    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским

    соглашением и даю согласие на обработку своих персональных данных.


    Подтвердите, что Вы не бот

    Выдержка из похожей работы

    Данные приведены в табл,1,4
    Таблица 1,4

    Мес,

    Задача 1

    Задача 2

    Задача 3

    Задача 4

    Задача 5

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    1

    13,0

    37,0

    13,2

    37,2

    22,5

    46,0

    22,5

    29,0

    23,0

    22,8

    2

    16,4

    60,0

    15,9

    58,2

    25,5

    54,0

    25,8

    36,2

    26,8

    27,5

    3

    17,0

    60,9

    16,2

    60,8

    19,2

    50,2

    20,8

    28,9

    28,0

    34,5

    4

    15,2

    52,1

    15,4

    52,0

    13,5

    43,8

    15,2

    32,4

    18,4

    26,4

    5

    14,2

    40,1

    14,2

    44,6

    25,4

    78,6

    25,8

    49,7

    30,4

    19,8

    6

    10,5

    30,4

    11,0

    31,2

    17,8

    60,2

    19,4

    38,1

    20,8

    17,9

    7

    20,0

    43,0

    21,1

    26,4

    18,0

    50,2

    18,2

    30,0

    22,4

    25,2

    8

    12,0

    32,1

    13,2

    20,7

    21,0

    54,7

    21,0

    32,6

    21,8

    20,1

    9

    15,6

    35,1

    15,4

    22,4

    16,5

    42,8

    16,4

    27,5

    18,5

    20,7

    10

    12,5

    32,0

    12,8

    35,4

    23,0

    60,4

    23,5

    39,0

    23,5

    21,4

    11

    13,2

    33,0

    14,5

    28,4

    14,6

    47,2

    18,8

    27,5

    16,7

    19,8

    12

    14,6

    32,5

    15,1

    20,7

    14,2

    40,6

    17,5

    31,2

    20,4

    24,5

    Задание:
    Рассчитайте параметры уравнений регрессий и , Оцените тесноту связи с показателем корреляции и детерминации,
    Рассчитайте средний коэффициент эластичности и дайте сравнительную оценку силы связи фактора с результатом,
    Рассчитайте среднюю ошибку аппроксимации и оцените качество модели,
    С помощью F-статистики Фишера (при ) оцените надежность уравнения регрессии,
    Рассчитайте прогнозное значение , если прогнозное значение фактора увеличится на 5% от его среднего значения, Определите доверительный интервал прогноза для ,
    Расчеты должны быть подробны, как показано в примере 1, и сопровождены пояснениями,
    Решение
    Составим таблицу расчетов для линейной регрессии y = a + bx + е (таблица построена в MS Exсel),
    Таблица 1,

    x

    x2

    y

    xy

    y2

    y — ?

    x — x~

    (y — ?) 2

    (x — x~) 2

    y

    y — y

    (y — y) 2

    A (%)

    22,8

    519,84

    23

    524,4

    529

    0,44

    -0,58

    0, 20

    0,34

    22,37

    0,63

    0,40

    2,76

    27,5

    756,25

    26,8

    737

    718,2

    4,24

    4,12

    17,99

    16,95

    23,91

    2,89

    8,32

    10,77

    34,5

    1190,3

    28

    966

    784

    5,44

    11,12

    29,61

    123,58

    26,22

    1,78

    3,16

    6,35

    26,4

    696,96

    18,4

    485,8

    338,6

    -4,16

    3,02

    17,29

    9,10

    23,55

    -5,15

    26,55

    28,00

    19,8

    392,04

    30,4

    601,9

    924,2

    7,84

    -3,58

    61,49

    12,84

    21,38

    9,02

    81,40

    29,68

    17,9

    320,41

    20,8

    372,3

    432,6

    -1,76

    -5,48

    3,09

    30,07

    20,75

    0,05

    0,00

    0,23

    25,2

    635,04

    22,4

    564,5

    501,8

    -0,16

    1,82

    0,03

    3,30

    23,16

    -0,76

    0,57

    3,38

    20,1

    404,01

    21,8

    438,2

    475,2

    -0,76

    -3,28

    0,58

    10,78

    21,48

    0,32

    0,10

    1,48

    20,7

    428,49

    18,5

    383

    342,3

    -4,06

    -2,68

    16,47

    7, 20

    21,67

    -3,17

    10,08

    17,16

    21,4

    457,96

    23,5

    502,9

    552,3

    0,94

    -1,98

    0,89

    3,93

    21,90

    1,60

    2,54

    6,79

    19,8

    392,04

    16,7

    330,7

    278,9

    -5,86

    -3,58

    34,32

    12,84

    21,38

    -4,68

    21,88

    28,01

    24,5

    600,25

    20,4

    499,8

    416,2

    -2,16

    1,12

    4,66

    1,25

    22,93

    -2,53

    6,38

    12,38

    У

    280,6

    6793,5

    270,7

    6406

    6293

    0,00

    0,00

    186,61

    232,18

    0,00

    161,40

    146,99

    У/n

    23,38

    566,13

    22,56

    533,86

    524,43

    13,45

    12,25

    у

    4,399

    3,943

    у2

    19,35

    15,55

    Отсюда получаем коэффициенты a и b:
    То есть, уравнение линейной регрессии в нашем случае имеет вид:
    y = 14,85 + 0,3295•x,

    Рассчитаем коэффициент корреляции:
    rxy = b•уx / уy = 0,329 • 4,399/3,943 = 0,368

    Малое значение коэффициента корреляции означает, что связь между признаком y и фактором x плохая,
    Вычислим значение F-критерия Фишера:

    и сравним его с табличным при б=0,05, н1 = 1, н2 = 10: Fтабл = 2,228

    Поскольку Fтабл > F, то гипотеза H0 о статистической незначимости параметра b принимается,
    Средняя ошибка аппроксимации
    также выходит за допустимые пределы 8 — 10%, что опять говорит о низкой надежности модели,
    Попробуем для сравнения модель y = a + b•vx + е, Для нее таблица параметров имеет вид:
    Таблица 2 (начало)

    x

    u = ?x

    u2

    y

    uy

    y2

    17,9

    4,23

    17,90

    20,80

    88,00

    432,64

    19,8

    4,45

    19,80

    30,40

    135,27

    924,16

    19,8

    4,45

    19,80

    16,70

    74,31

    278,89

    20,1

    4,48

    20,10

    21,80

    97,74

    475,24

    20,7

    4,55

    20,70

    18,50

    84,17

    342,25

    21,4

    4,63

    21,40

    23,50

    108,71

    552,25

    22,8

    4,77

    22,80

    23,00

    109,82

    529,00

    24,5

    4,95

    24,50

    20,40

    100,97

    416,16

    25,2

    5,02

    25, 20

    22,40

    112,45

    501,76

    26,4

    5,14

    26,40

    18,40

    94,54

    338,56

    27,5

    5,24

    27,50

    26,80

    140,54

    718,24

    34,5

    5,87

    34,50

    28,00

    164,46

    784,00

    У

    57,79

    280,60

    270,70

    1310,99

    6293,15

    Среднее значение

    4,82

    23,38

    22,56

    109,25

    524,43

    Таблица 2 (окончание)

    y — ?

    u — ?

    (y — ?) 2

    (u — ?) 2

    y

    y — y

    (y — y) 2

    A (%)

    -1,76

    -0,58

    3,09

    0,34

    20,69

    0,11

    0,01

    0,55

    7,84

    -0,37

    61,49

    0,13

    21,39

    9,01

    81,25

    29,65

    -5,86

    -0,37

    34,32

    0,13

    21,39

    -4,69

    21,96

    28,06

    -0,76

    -0,33

    0,58

    0,11

    21,49

    0,31

    0,09

    1,41

    -4,06

    -0,27

    16,47

    0,07

    21,71

    -3,21

    10,28

    17,33

    0,94

    -0, 19

    0,89

    0,04

    21,95

    1,55

    2,40

    6,59

    0,44

    -0,04

    0, 20

    0,00

    22,43

    0,57

    0,33

    2,49

    -2,16

    0,13

    4,66

    0,02

    22,99

    -2,59

    6,69

    12,68

    -0,16

    0, 20

    0,03

    0,04

    23,21

    -0,81

    0,66

    3,62

    -4,16

    0,32

    17,29

    0,10

    23,59

    -5, 19

    26,94

    28,21

    4,24

    0,43

    17,99

    0,18

    23,93

    2,87

    8,24

    10,71

    5,44

    1,06

    29,61

    1,12

    25,95

    2,05

    4,22

    7,34

    У

    0,00

    0,00

    186,61

    2,30

    0,00

    163,08

    148,65

    У/n

    13,59

    12,39

    Здесь мы вводим переменную u = vx и получаем линейную модель относительно x и u:
    u = a + b•u + е,
    Найдем коэффициенты a и b:
    ,
    Рассчитаем коэффициент корреляции:
    ruy = b • уu /уy = 3, 203 • 0,437/ 3,943 = 0,355104

    Мы получили значение коэффициента корреляции еще хуже, чем в предыдущем случае,
    Проверим значение F-критерия Фишера:
    И снова расчетное значение еще хуже,
    Средняя о
    шибка аппроксимации также оказалась хуже, чем в линейной модели:
    Линейная модель оказалась надежнее (хотя тоже неудовлетворительная) и поэтому последующие расчеты мы будем делать для нее,
    Рассмотрим гипотезу H0 о статистической незначимости основных параметров модели: H0: {a = b = rxy = 0} и найдем для нее табличное значение распределения Стьюдента:
    tтабл (б =0,05, н = 10) = 2,228,

    Определим ошибки ma, mb и mr:
    Оценим значимость параметров:
    ta = a/ma = 7,139/6,27 = 2,368 > tтабл,
    tb = b/mb = 3, 202/0,2637 = 1,25 < tтабл tr = r/mr = 0,368/0,294 = 1,25 < tтабл Таким образом, параметры модели незначимо отличаются от нуля, и, следовательно, модель нельзя использовать для прогноза, Чтобы окончательно убедиться в этом, попробуем оценить доверительный интервал прогноза при отклонении хпрог от среднего значения на 5% для доверительной вероятности 0,01, Для yprog = a + b•xprog = 22,94,my = 4, 193, При б = 0,01 и n = 10 tтабл = 3,169,tтабл • my =13,29, Следовательно, доверительным интервалом будет (22,94 - 13,29, 22,94 +13,29) или 9,656 < yprog < 36,231, Таким образом, сделанный прогноз абсолютно ненадежен и совершенно неточен, Контрольное задание № 2 Задача 2 Имеются данные о деятельности крупнейших компаний в течение двенадцати месяцев 199Х года"

    Рейтинг@Mail.ru Яндекс.Метрика