Учебная работа № 88691. «Контрольная Эконометрика вариант 6
Содержание:
«Вариант 6
Номер предприятия Номер предприятия
1 7 3,5 9 11 10 6,3 21
2 7 3,6 10 12 10 6,8 22
3 7 3,8 14 13 11 7,2 24
4 7 4,2 15 14 12 7,9 25
5 8 4,3 18 15 12 8,1 26
6 8 4,7 19 16 13 8,3 29
7 9 5,4 19 17 13 8,4 31
8 9 5,6 20 18 13 8,8 32
9 10 5,9 20 19 14 9,6 35
10 10 6,1 21 20 14 9,7 36
По 20 предприятиям региона изучается зависимость выработки продукции на одного работника (тыс. руб.) от ввода в действие новых основных фондов (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих (%) (смотри таблицу своего варианта).
1. Постройте линейную модель множественной регрессии. Запишите стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжируйте факторы по степени их влияния на результат.
2. Найдите коэффициенты парной, частной и множественной корреляции. Проанализируйте их.
3. Найдите скорректированный коэффициент множественной детерминации. Сравните его с нескорректированным (общим) коэффициентом детерминации.
4. С помощью -критерия Фишера оцените статистическую надежность уравнения регрессии и коэффициента детерминации .
5. С помощью частных -критериев Фишера оцените целесообразность включения в уравнение множественной регрессии фактора после и фактора после .
6. Составьте уравнение линейной парной регрессии, оставив лишь один значащий фактор.
Вариант 9
1 5,5 9 8,3
2 4,8 10 5,4
3 5,2 11 6,4
4 9,0 12 10,9
5 7,1 13 9,0
6 4,9 14 6,6
7 6,1 15 7,5
8 10,0 16 11,2
Имеются условные данные об объемах потребления электроэнергии ( ) жителями региона за 16 кварталов.
Требуется:
1. Построить автокорреляционную функцию и сделать вывод о наличии сезонных колебаний.
2. Построить аддитивную модель временного ряда (для нечетных вариантов) или мультипликативную модель временного ряда (для четных вариантов).
3. Сделать прогноз на 2 квартала вперед.
Вариант 4
Модель Кейнса (одна из версий):
где – потребление; – ВВП; – валовые инвестиции; – государственные расходы; – текущий период; – предыдущий период.
Даны системы эконометрических уравнений.
Требуется
1. Применив необходимое и достаточное условие идентификации, определите, идентифицируемо ли каждое из уравнений модели.
2. Определите метод оценки параметров модели.
3. Запишите в общем виде приведенную форму модели.
»
Форма заказа готовой работы
Выдержка из похожей работы
1, Цель работы
Цель контрольной работы — демонстрация полученных теоретических знаний и приобретенных практических навыков по эконометрике — как синтезу экономической теории, экономической статистики и математики, в том числе исследование линейных моделей парной (ЛМПР) и множественной регрессии (ЛММР), трендовых моделей, методом наименьших квадратов (МНК),
Для проведения расчетов использовалось приложение к ПЭВМ типа EXCEL,
2, Исследование линейных моделей парной (ЛМПР) и
множественной регрессии (ЛММР) методом наименьших
квадратов (МНК),
2,1 Контрольная задача № 1
2,1,1, Исследуем зависимость производительности труда Y (т/ч) от уровня механизации Х (%),
Исходные данные для 14 однотипных предприятий приводятся в таблице 1:
Таблица 1
xi
32
30
36
40
41
47
56
54
60
55
61
67
69
76
yi
20
24
28
30
31
33
34
37
38
40
41
43
45
48
2,1,2 Матричная форма записи ЛМПР (ЛММР):
Y^ = X* A^ (1), где А^ — вектор-столбец параметров регрессии;
xi1 — предопределенные (объясняющие) переменные, n = 1;
ранг матрицы X = n + 1= 2 < k = 14 (2),
Исходные данные представляют в виде матриц,
( 1 32 ) (20 )
( 1 30) (24 )
( 1 36) (28 )
( 1 40 ) (30 )
(1 41 ) (31 )
( 1 47 ) (33)
X = (1 56) Y = (34 )
(1 54) (37 )
(1 60 ) (38 )
(1 55 ) (40 )
( 1 61 ) (41 )
( 1 67 ) (43)
(1 69 ) (45 )
( 1 76 ) (48 )
Значение параметров А^ = (а0, а1) T и 2 - нам неизвестны и их требуется определить (статистически оценить) методом наименьших квадратов,
Так как матрица Х, по условию, является прямоугольной, а обратную матрицу Х-1 можно рассчитать только для квадратной матрицы, то произведем небольшие преобразования матричного уравнения типаY = X *A, умножив левую и правую части на транспонированную матрицу Х Т,
Получим XT* X * A^ = X T * Y ,
откуда A^ = (XT * X ) -1 *( XT * Y) (3),
где (XT * X ) -1 - обратная матрица,
2,1,2, Решение,
а) Найдем транспонированную матрицу ХТ :
( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 )
XT = ( 32 30 36 40 41 47 56 54 60 55 61 67 69 76 )
в) Находим произведение матриц XT *X :
( 14 724 )
XT * X = ( 724 40134)
г) Находим произведение матриц XT * Y:
( 492 )
XT * Y = ( 26907 )
д) Вычисляем обратную матрицу ( XT * X) -1 :
( 1,064562 -0,0192 )
( XT * X) -1 = (-0,0192 0,000371)
е) Умножаем обратную матрицу ( XT * X) -1 на произведение
матриц (XT *Y) и получаем вектор- столбец A^ = (a 0 , a 1)T :
( 7,0361 )
A^ = ( XT * X) -1 * (XT * Y) = ( 0,543501),
Уравнение парной регрессии имеет следующий вид:
уi^ = 7,0361 + 0,543501* xi1 (4),
уi^ (60) = 7,0361 + 0,543501*60 = 39, 646,
2,1,3 Оценка качества найденных параметров
Для оценки качества параметров A применим коэффициент детерминации R2 , Величина R2 показывает, какая часть (доля) вариации зависимой переменной обусловлена объясняющей переменной, Чем ближе R2 к единице, тем лучше регрессия аппроксимирует экспериментальные данные,
Q = ?(yi - y?)2 (5) - общая сумма квадратов отклонений зависимой переменной от средней; QR = ?(y^i - y?)2 (6) - сумма квадратов, обусловленная регрессией; Qе = ?(yi - y^i)2 (7) - остаточная сумма квадратов, характеризующая влияние неучтенных факторов; Q = QR + Qе (8),
Q = 847,714; QR = 795,453; Qе = 52,261"