Учебная работа № 88691. «Контрольная Эконометрика вариант 6

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Учебная работа № 88691. «Контрольная Эконометрика вариант 6

Количество страниц учебной работы: 22
Содержание:
«Вариант 6
Номер предприятия Номер предприятия
1 7 3,5 9 11 10 6,3 21
2 7 3,6 10 12 10 6,8 22
3 7 3,8 14 13 11 7,2 24
4 7 4,2 15 14 12 7,9 25
5 8 4,3 18 15 12 8,1 26
6 8 4,7 19 16 13 8,3 29
7 9 5,4 19 17 13 8,4 31
8 9 5,6 20 18 13 8,8 32
9 10 5,9 20 19 14 9,6 35
10 10 6,1 21 20 14 9,7 36
По 20 предприятиям региона изучается зависимость выработки продукции на одного работника (тыс. руб.) от ввода в действие новых основных фондов (% от стоимости фондов на конец года) и от удельного веса рабочих высокой квалификации в общей численности рабочих (%) (смотри таблицу своего варианта).
1. Постройте линейную модель множественной регрессии. Запишите стандартизованное уравнение множественной регрессии. На основе стандартизованных коэффициентов регрессии и средних коэффициентов эластичности ранжируйте факторы по степени их влияния на результат.
2. Найдите коэффициенты парной, частной и множественной корреляции. Проанализируйте их.
3. Найдите скорректированный коэффициент множественной детерминации. Сравните его с нескорректированным (общим) коэффициентом детерминации.
4. С помощью -критерия Фишера оцените статистическую надежность уравнения регрессии и коэффициента детерминации .
5. С помощью частных -критериев Фишера оцените целесообразность включения в уравнение множественной регрессии фактора после и фактора после .
6. Составьте уравнение линейной парной регрессии, оставив лишь один значащий фактор.

Вариант 9
1 5,5 9 8,3
2 4,8 10 5,4
3 5,2 11 6,4
4 9,0 12 10,9
5 7,1 13 9,0
6 4,9 14 6,6
7 6,1 15 7,5
8 10,0 16 11,2
Имеются условные данные об объемах потребления электроэнергии ( ) жителями региона за 16 кварталов.
Требуется:
1. Построить автокорреляционную функцию и сделать вывод о наличии сезонных колебаний.
2. Построить аддитивную модель временного ряда (для нечетных вариантов) или мультипликативную модель временного ряда (для четных вариантов).
3. Сделать прогноз на 2 квартала вперед.

Вариант 4
Модель Кейнса (одна из версий):
где – потребление; – ВВП; – валовые инвестиции; – государственные расходы; – текущий период; – предыдущий период.
Даны системы эконометрических уравнений.
Требуется
1. Применив необходимое и достаточное условие идентификации, определите, идентифицируемо ли каждое из уравнений модели.
2. Определите метод оценки параметров модели.
3. Запишите в общем виде приведенную форму модели.
»

Стоимость данной учебной работы: 585 руб.Учебная работа № 88691.  "Контрольная Эконометрика вариант 6
Форма заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант


    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским

    соглашением и даю согласие на обработку своих персональных данных.


    Подтвердите, что Вы не бот

    Выдержка из похожей работы

    год
    1, Цель работы

    Цель контрольной работы — демонстрация полученных теоретических знаний и приобретенных практических навыков по эконометрике — как синтезу экономической теории, экономической статистики и математики, в том числе исследование линейных моделей парной (ЛМПР) и множественной регрессии (ЛММР), трендовых моделей, методом наименьших квадратов (МНК),
    Для проведения расчетов использовалось приложение к ПЭВМ типа EXCEL,
    2, Исследование линейных моделей парной (ЛМПР) и
    множественной регрессии (ЛММР) методом наименьших
    квадратов (МНК),

    2,1 Контрольная задача № 1

    2,1,1, Исследуем зависимость производительности труда Y (т/ч) от уровня механизации Х (%),
    Исходные данные для 14 однотипных предприятий приводятся в таблице 1:
    Таблица 1

    xi

    32

    30

    36

    40

    41

    47

    56

    54

    60

    55

    61

    67

    69

    76

    yi

    20

    24

    28

    30

    31

    33

    34

    37

    38

    40

    41

    43

    45

    48

    2,1,2 Матричная форма записи ЛМПР (ЛММР):
    Y^ = X* A^ (1), где А^ — вектор-столбец параметров регрессии;
    xi1 — предопределенные (объясняющие) переменные, n = 1;
    ранг матрицы X = n + 1= 2 < k = 14 (2), Исходные данные представляют в виде матриц, ( 1 32 ) (20 ) ( 1 30) (24 ) ( 1 36) (28 ) ( 1 40 ) (30 ) (1 41 ) (31 ) ( 1 47 ) (33) X = (1 56) Y = (34 ) (1 54) (37 ) (1 60 ) (38 ) (1 55 ) (40 ) ( 1 61 ) (41 ) ( 1 67 ) (43) (1 69 ) (45 ) ( 1 76 ) (48 ) Значение параметров А^ = (а0, а1) T и 2 - нам неизвестны и их требуется определить (статистически оценить) методом наименьших квадратов, Так как матрица Х, по условию, является прямоугольной, а обратную матрицу Х-1 можно рассчитать только для квадратной матрицы, то произведем небольшие преобразования матричного уравнения типаY = X *A, умножив левую и правую части на транспонированную матрицу Х Т, Получим XT* X * A^ = X T * Y , откуда A^ = (XT * X ) -1 *( XT * Y) (3), где (XT * X ) -1 - обратная матрица, 2,1,2, Решение, а) Найдем транспонированную матрицу ХТ : ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) XT = ( 32 30 36 40 41 47 56 54 60 55 61 67 69 76 ) в) Находим произведение матриц XT *X : ( 14 724 ) XT * X = ( 724 40134) г) Находим произведение матриц XT * Y: ( 492 ) XT * Y = ( 26907 ) д) Вычисляем обратную матрицу ( XT * X) -1 : ( 1,064562 -0,0192 ) ( XT * X) -1 = (-0,0192 0,000371) е) Умножаем обратную матрицу ( XT * X) -1 на произведение матриц (XT *Y) и получаем вектор- столбец A^ = (a 0 , a 1)T : ( 7,0361 ) A^ = ( XT * X) -1 * (XT * Y) = ( 0,543501), Уравнение парной регрессии имеет следующий вид: уi^ = 7,0361 + 0,543501* xi1 (4), уi^ (60) = 7,0361 + 0,543501*60 = 39, 646, 2,1,3 Оценка качества найденных параметров Для оценки качества параметров A применим коэффициент детерминации R2 , Величина R2 показывает, какая часть (доля) вариации зависимой переменной обусловлена объясняющей переменной, Чем ближе R2 к единице, тем лучше регрессия аппроксимирует экспериментальные данные, Q = ?(yi - y?)2 (5) - общая сумма квадратов отклонений зависимой переменной от средней; QR = ?(y^i - y?)2 (6) - сумма квадратов, обусловленная регрессией; Qе = ?(yi - y^i)2 (7) - остаточная сумма квадратов, характеризующая влияние неучтенных факторов; Q = QR + Qе (8), Q = 847,714; QR = 795,453; Qе = 52,261"

    Рейтинг@Mail.ru Яндекс.Метрика