Учебная работа № 88650. «Контрольная Исследование операций в экономике 2 задания

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...
Контрольные рефераты

Учебная работа № 88650. «Контрольная Исследование операций в экономике 2 задания

Количество страниц учебной работы: 6
Содержание:
«Контрольная работа
Задание 1. Производственная функция фирмы имеет вид , лимит на ресурсы равен V, цены на ресурсы соответственно равны . Требуется:
а) решить задачу максимизации выпуска фирмы при лимите ресурсов;
б) решить задачу а) методом Лагранжа (только этим методом);
в) определить максимальный выпуск фирмы.
Параметры: V=90.

Задание 2. Решить графически задачу на определение оптимальных сроков замены оборудования. Даны: стоимость нового оборудования зависит от года покупки
ликвидная стоимость стоимость содержания оборудования в течение года: — срок эксплуатации, в конце которого оборудование продается. Здесь возраст оборудования; номер варианта. Критерий оптимальности – суммарные затраты на эксплуатацию оборудования в течение лет с учетом первоначальной покупки и последующей продажи.

»

Стоимость данной учебной работы: 585 руб.Учебная работа № 88650.  "Контрольная Исследование операций в экономике 2 задания
Форма заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским
    соглашением
    и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    Прянишникова

    Кафедра Информационных систем

    Контрольная работа

    по дисциплине:

    «Экономико-математические методы и модели»

    на тему:

    «Типовые математические модели экономических задач линейного программирования »

    Выполнил: студент 2 курса заочного отделения

    по специальности: 060800 «Экономика и

    управление на предприятиях АПК»

    шифр ЭКР-2010-404

    Рудометов

    Проверил: О,Ю, Вшивков

    Пермь-2015

    Содержание

    1, Типовые математические модели экономических задач линейного программирования: задача об оптимальном использовании ресурсов, задача о производственных мощностях

    2, Задача линейного программирования

    3, Транспортная задача

    Список использованной литературы

    1, Типовые математические модели экономических задач линейного программирования: задача об оптимальном использовании ресурсов, задача о производственных мощностях

    Многие задачи, с которыми приходится иметь дело в повседневной практике, являются многовариантными, Среди множества возможных вариантов в условиях рыночных отношений приходится отыскивать наилучшие в некотором смысле при ограничениях, налагаемых на природные, экономические и технологические возможности, В связи с этим возникла необходимость применять для анализа и синтеза экономических ситуаций и систем математические методы и современную вычислительную технику,

    Такие методы объединяются под общим названием — математическое программирование,

    Математическое программирование — область математики, разрабатывающая теорию и численные методы решения многомерных экстремальных задач с ограничениями, т,е, задач на экстремум функции многих переменных с ограничениями на область изменения этих переменных,

    Функцию, экстремальное значение которой нужно найти в условиях экономических возможностей, называют целевой, показателем эффективности или критерием оптимальности, Экономические возможности формализуются в виде системы ограничений, Все это составляет математическую модель, Математическая модель задачи — это отражение оригинала в виде функций, уравнений, неравенств, цифр и т,д, Модель задачи математического программирования включает:

    1) совокупность неизвестных величин, действуя на которые, систему можно совершенствовать, Их называют планом задачи (вектором управления, решением, управлением, стратегией, поведением и др,);

    2) целевую функцию (функцию цели, показатель эффективности, критерий оптимальности, функционал задачи и др,), Целевая функция позволяет выбирать наилучший вариант — из множества возможных, Наилучший вариант доставляет целевой функции экстремальное значение, Это может быть прибыль, объем выпуска или реализации, затраты производства, издержки обращения, уровень обслуживания или дефицитности, число комплектов, отходы и т,д,

    Эти условия следуют из ограниченности ресурсов, которыми располагает общество в любой момент времени, из необходимости удовлетворения насущных потребностей, из условий производственных и технологических процессов, Ограниченными являются не только материальные, финансовые и трудовые ресурсы, Таковыми могут быть возможности технического, технологического и вообще научного потенциала, Нередко потребности превышают возможности их удовлетворения, Математически ограничения выражаются в виде уравнений и неравенств»

    Рейтинг@Mail.ru Яндекс.Метрика