Учебная работа № 88616. «Контрольная Эконометрика. Задания 1-3

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...

Учебная работа № 88616. «Контрольная Эконометрика. Задания 1-3

Количество страниц учебной работы: 22
Содержание:
«Задание №1
Экономист, изучая зависимость уровня Y (тыс. руб.) издержек обращения от объема X (тыс. руб.) товарооборота, обследовал по 10 магазинов, торгующих одинаковым ассортиментом товаров в 5 районах. Полученные данные отражены в таблице 1.
Задание
Для каждого из районов (в каждой задаче) требуется:
? найти коэффициенты корреляции между X и Y;
? построить регрессионные функции линейной зависимости Y = a + b*X фактора Y от фактора X и исследовать их на надежность по критерию Фишера при уровне значимости 0,05;
? найти коэффициент эластичности Y по X при среднем значении X;
? определить надежность коэффициентов регрессии по критерию Стьюдента:
? найти доверительные интервалы для коэффициентов регрессии;
? построить график регрессионной функции и диаграмму рассеяния;
? используя полученное уравнение линейной регрессии, оце¬нить ожидаемое среднее значение признака Y при X = 130 тыс. руб.
Таблица 1
3
X тыс. руб. Y тыс. руб.
160 12,5
120 9,3
110 9,2
80 6,4
90 7,5
130 11,6
150 13,1
70 5,2
100 7,9
60 4,4

Задание №2
В ходе эксперимента получены 25 наблюдений двух независимых переменных X1, X2 и переменной Y. Эти данные записаны в следующей таблице для одиннадцати вариантов.
Таблица 3 Исходные данные.

пп X1 X2 Y
3
1 -2 -2 14,969
2 -2 -1 6,236
3 -2 0 -1,344
4 -2 1 -9,985
5 -2 2 -17,385
6 -1 -2 5,615
7 -1 -1 2,424
8 -1 0 -0,522
9 -1 1 -3,017
10 -1 2 -6,577
11 0 -2 -3,148
12 0 -1 -1,311
13 0 0 0,719
14 0 1 2,517
15 0 2 4,953
16 1 -2 -12,36
17 1 -1 -5,831
18 1 0 1,263
19 1 1 8,608
20 1 2 15,091
21 2 -2 -21,515
22 2 -1 -9,309
23 2 0 2,705
24 2 1 14,96
25 2 2 26,744
Из априорных рассуждений выведена гипотеза, что Y является линейной функцией от регрессоров X1, X2, (X1) 2, (X2)2, X1*X2, tg(X1*X2).
Требуется:
1 Найти коэффициенты попарной корреляции для наборов данных всех регрессоров и отклика.
2 Выбрать наилучшую регрессионную функцию, используя при отборе коэффициенты попарной корреляции, коэффициенты множественной корреляции, критерий Фишера, статистики Стьюдента.
3 Дать интервальную оценку коэффициентов наилучшей регрессии.

Задание №3
Экспорт, импорт, внешнеторговый оборот Австрии, Бельги, Англии и Франции за 1961 — 1995 гг. характеризуются данными, представленными в таблице 3.
Таблица 20
Год Австрия, млн шиллингов
Внешне¬торговый оборот
1961 87
1962 93
1963 102
1964 112
1965 125
1966 138
1967 146
1968 159
1969 186
1970 248
1971 255
1972 290
1973 330
1974 410
1975 414
1976 483
1977 535
1978 561
1979 660
1980 752
1981 824
1982 843
1983 884
1984 994
1985 1096
1986 1033
1987 1047
1988 1174
1989 1330
1990 1457
1991 1533
1992 1564
1993 1560
1994 1677
1995 1798
Задание
• Постройте график динамики по временному ряду.
• Проведите расчет параметров трендов разной формы.
• Оцените качество каждого тренда через среднюю ошибку аппрок-симации, линейный коэффициент автокорреляции отклонений.
• Оцените статистическую значимость трендов через F-критерий, значимость параметров тренда — через t-критерий.
• Выберите лучшую форму тренда и выполните по ней точечный прогноз на 1998 г.
• Оцените ошибку прогноза и постройте доверительный интервал прогноза для уровня значимости 0,05.

»

Стоимость данной учебной работы: 585 руб.Учебная работа № 88616.  "Контрольная Эконометрика. Задания 1-3
Форма заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант


    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским

    соглашением и даю согласие на обработку своих персональных данных.


    Подтвердите, что Вы не бот

    Выдержка из похожей работы

    Данные приведены в табл,1,4
    Таблица 1,4

    Мес,

    Задача 1

    Задача 2

    Задача 3

    Задача 4

    Задача 5

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    1

    13,0

    37,0

    13,2

    37,2

    22,5

    46,0

    22,5

    29,0

    23,0

    22,8

    2

    16,4

    60,0

    15,9

    58,2

    25,5

    54,0

    25,8

    36,2

    26,8

    27,5

    3

    17,0

    60,9

    16,2

    60,8

    19,2

    50,2

    20,8

    28,9

    28,0

    34,5

    4

    15,2

    52,1

    15,4

    52,0

    13,5

    43,8

    15,2

    32,4

    18,4

    26,4

    5

    14,2

    40,1

    14,2

    44,6

    25,4

    78,6

    25,8

    49,7

    30,4

    19,8

    6

    10,5

    30,4

    11,0

    31,2

    17,8

    60,2

    19,4

    38,1

    20,8

    17,9

    7

    20,0

    43,0

    21,1

    26,4

    18,0

    50,2

    18,2

    30,0

    22,4

    25,2

    8

    12,0

    32,1

    13,2

    20,7

    21,0

    54,7

    21,0

    32,6

    21,8

    20,1

    9

    15,6

    35,1

    15,4

    22,4

    16,5

    42,8

    16,4

    27,5

    18,5

    20,7

    10

    12,5

    32,0

    12,8

    35,4

    23,0

    60,4

    23,5

    39,0

    23,5

    21,4

    11

    13,2

    33,0

    14,5

    28,4

    14,6

    47,2

    18,8

    27,5

    16,7

    19,8

    12

    14,6

    32,5

    15,1

    20,7

    14,2

    40,6

    17,5

    31,2

    20,4

    24,5

    Задание:
    Рассчитайте параметры уравнений регрессий и , Оцените тесноту связи с показателем корреляции и детерминации,
    Рассчитайте средний коэффициент эластичности и дайте сравнительную оценку силы связи фактора с результатом,
    Рассчитайте среднюю ошибку аппроксимации и оцените качество модели,
    С помощью F-статистики Фишера (при ) оцените надежность уравнения регрессии,
    Рассчитайте прогнозное значение , если прогнозное значение фактора увеличится на 5% от его среднего значения, Определите доверительный интервал прогноза для ,
    Расчеты должны быть подробны, как показано в примере 1, и сопровождены пояснениями,
    Решение
    Составим таблицу расчетов для линейной регрессии y = a + bx + е (таблица построена в MS Exсel),
    Таблица 1,

    x

    x2

    y

    xy

    y2

    y — ?

    x — x~

    (y — ?) 2

    (x — x~) 2

    y

    y — y

    (y — y) 2

    A (%)

    22,8

    519,84

    23

    524,4

    529

    0,44

    -0,58

    0, 20

    0,34

    22,37

    0,63

    0,40

    2,76

    27,5

    756,25

    26,8

    737

    718,2

    4,24

    4,12

    17,99

    16,95

    23,91

    2,89

    8,32

    10,77

    34,5

    1190,3

    28

    966

    784

    5,44

    11,12

    29,61

    123,58

    26,22

    1,78

    3,16

    6,35

    26,4

    696,96

    18,4

    485,8

    338,6

    -4,16

    3,02

    17,29

    9,10

    23,55

    -5,15

    26,55

    28,00

    19,8

    392,04

    30,4

    601,9

    924,2

    7,84

    -3,58

    61,49

    12,84

    21,38

    9,02

    81,40

    29,68

    17,9

    320,41

    20,8

    372,3

    432,6

    -1,76

    -5,48

    3,09

    30,07

    20,75

    0,05

    0,00

    0,23

    25,2

    635,04

    22,4

    564,5

    501,8

    -0,16

    1,82

    0,03

    3,30

    23,16

    -0,76

    0,57

    3,38

    20,1

    404,01

    21,8

    438,2

    475,2

    -0,76

    -3,28

    0,58

    10,78

    21,48

    0,32

    0,10

    1,48

    20,7

    428,49

    18,5

    383

    342,3

    -4,06

    -2,68

    16,47

    7, 20

    21,67

    -3,17

    10,08

    17,16

    21,4

    457,96

    23,5

    502,9

    552,3

    0,94

    -1,98

    0,89

    3,93

    21,90

    1,60

    2,54

    6,79

    19,8

    392,04

    16,7

    330,7

    278,9

    -5,86

    -3,58

    34,32

    12,84

    21,38

    -4,68

    21,88

    28,01

    24,5

    600,25

    20,4

    499,8

    416,2

    -2,16

    1,12

    4,66

    1,25

    22,93

    -2,53

    6,38

    12,38

    У

    280,6

    6793,5

    270,7

    6406

    6293

    0,00

    0,00

    186,61

    232,18

    0,00

    161,40

    146,99

    У/n

    23,38

    566,13

    22,56

    533,86

    524,43

    13,45

    12,25

    у

    4,399

    3,943

    у2

    19,35

    15,55

    Отсюда получаем коэффициенты a и b:
    То есть, уравнение линейной регрессии в нашем случае имеет вид:
    y = 14,85 + 0,3295•x,

    Рассчитаем коэффициент корреляции:
    rxy = b•уx / уy = 0,329 • 4,399/3,943 = 0,368

    Малое значение коэффициента корреляции означает, что связь между признаком y и фактором x плохая,
    Вычислим значение F-критерия Фишера:

    и сравним его с табличным при б=0,05, н1 = 1, н2 = 10: Fтабл = 2,228

    Поскольку Fтабл > F, то гипотеза H0 о статистической незначимости параметра b принимается,
    Средняя ошибка аппроксимации
    также выходит за допустимые пределы 8 — 10%, что опять говорит о низкой надежности модели,
    Попробуем для сравнения модель y = a + b•vx + е, Для нее таблица параметров имеет вид:
    Таблица 2 (начало)

    x

    u = ?x

    u2

    y

    uy

    y2

    17,9

    4,23

    17,90

    20,80

    88,00

    432,64

    19,8

    4,45

    19,80

    30,40

    135,27

    924,16

    19,8

    4,45

    19,80

    16,70

    74,31

    278,89

    20,1

    4,48

    20,10

    21,80

    97,74

    475,24

    20,7

    4,55

    20,70

    18,50

    84,17

    342,25

    21,4

    4,63

    21,40

    23,50

    108,71

    552,25

    22,8

    4,77

    22,80

    23,00

    109,82

    529,00

    24,5

    4,95

    24,50

    20,40

    100,97

    416,16

    25,2

    5,02

    25, 20

    22,40

    112,45

    501,76

    26,4

    5,14

    26,40

    18,40

    94,54

    338,56

    27,5

    5,24

    27,50

    26,80

    140,54

    718,24

    34,5

    5,87

    34,50

    28,00

    164,46

    784,00

    У

    57,79

    280,60

    270,70

    1310,99

    6293,15

    Среднее значение

    4,82

    23,38

    22,56

    109,25

    524,43

    Таблица 2 (окончание)

    y — ?

    u — ?

    (y — ?) 2

    (u — ?) 2

    y

    y — y

    (y — y) 2

    A (%)

    -1,76

    -0,58

    3,09

    0,34

    20,69

    0,11

    0,01

    0,55

    7,84

    -0,37

    61,49

    0,13

    21,39

    9,01

    81,25

    29,65

    -5,86

    -0,37

    34,32

    0,13

    21,39

    -4,69

    21,96

    28,06

    -0,76

    -0,33

    0,58

    0,11

    21,49

    0,31

    0,09

    1,41

    -4,06

    -0,27

    16,47

    0,07

    21,71

    -3,21

    10,28

    17,33

    0,94

    -0, 19

    0,89

    0,04

    21,95

    1,55

    2,40

    6,59

    0,44

    -0,04

    0, 20

    0,00

    22,43

    0,57

    0,33

    2,49

    -2,16

    0,13

    4,66

    0,02

    22,99

    -2,59

    6,69

    12,68

    -0,16

    0, 20

    0,03

    0,04

    23,21

    -0,81

    0,66

    3,62

    -4,16

    0,32

    17,29

    0,10

    23,59

    -5, 19

    26,94

    28,21

    4,24

    0,43

    17,99

    0,18

    23,93

    2,87

    8,24

    10,71

    5,44

    1,06

    29,61

    1,12

    25,95

    2,05

    4,22

    7,34

    У

    0,00

    0,00

    186,61

    2,30

    0,00

    163,08

    148,65

    У/n

    13,59

    12,39

    Здесь мы вводим переменную u = vx и получаем линейную модель относительно x и u:
    u = a + b•u + е,
    Найдем коэффициенты a и b:
    ,
    Рассчитаем коэффициент корреляции:
    ruy = b • уu /уy = 3, 203 • 0,437/ 3,943 = 0,355104

    Мы получили значение коэффициента корреляции еще хуже, чем в предыдущем случае,
    Проверим значение F-критерия Фишера:
    И снова расчетное значение еще хуже,
    Средняя о
    шибка аппроксимации также оказалась хуже, чем в линейной модели:
    Линейная модель оказалась надежнее (хотя тоже неудовлетворительная) и поэтому последующие расчеты мы будем делать для нее,
    Рассмотрим гипотезу H0 о статистической незначимости основных параметров модели: H0: {a = b = rxy = 0} и найдем для нее табличное значение распределения Стьюдента:
    tтабл (б =0,05, н = 10) = 2,228,

    Определим ошибки ma, mb и mr:
    Оценим значимость параметров:
    ta = a/ma = 7,139/6,27 = 2,368 > tтабл,
    tb = b/mb = 3, 202/0,2637 = 1,25 < tтабл tr = r/mr = 0,368/0,294 = 1,25 < tтабл Таким образом, параметры модели незначимо отличаются от нуля, и, следовательно, модель нельзя использовать для прогноза, Чтобы окончательно убедиться в этом, попробуем оценить доверительный интервал прогноза при отклонении хпрог от среднего значения на 5% для доверительной вероятности 0,01, Для yprog = a + b•xprog = 22,94,my = 4, 193, При б = 0,01 и n = 10 tтабл = 3,169,tтабл • my =13,29, Следовательно, доверительным интервалом будет (22,94 - 13,29, 22,94 +13,29) или 9,656 < yprog < 36,231, Таким образом, сделанный прогноз абсолютно ненадежен и совершенно неточен, Контрольное задание № 2 Задача 2 Имеются данные о деятельности крупнейших компаний в течение двенадцати месяцев 199Х года"

    Рейтинг@Mail.ru Яндекс.Метрика