Учебная работа № 88615. «Контрольная Эконометрика. Вариант 5, задачи 1-3

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...
Контрольные рефераты

Учебная работа № 88615. «Контрольная Эконометрика. Вариант 5, задачи 1-3

Количество страниц учебной работы: 25
Содержание:
«Задание № 1.
По данным, взятым из соответствующей таблицы, выполнить следующие действия:
1. Построить поле корреляции и сформулировать гипотезу о форме связи.
2. Рассчитать параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии.
3. Оценить тесноту связи с помощью показателей корреляции и детерминации.
4. Дать с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.
5. Оценить с помощью средней ошибки аппроксимации качество уравнений.
6. Оценить с помощью F-критерия Фишера статистическую надежность результатов регрессионного моделирования. По значениям характеристик, рассчитанных в пп. 4, 5 и данном пункте, выбрать лучшее уравнение регрессии и дать его обоснование.
7. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 15% от его среднего уровня. Определить доверительный интервал прогноза для уровня значимости б=0,05.
8. Оценить полученные результаты, выводы оформить в аналитической записке.
Год Фактическое конечное потребление домашних хозяйств (в текущих ценах), млрд. руб. (1995 г. — трлн. руб.), y Численность населения с денежными доходами ниже величины прожиточного минимума млн. человек, х
1995 872 36,5
2000 3813 42,3
2001 5014 40
2002 6400 35,6
2003 7708 29,3
2004 9848 25,2
2005 12455 25,2
2006 15284 21,5
2007 18928 18,7
2008 23695 18,9
2009 25151 18,5
2. Рассчитать параметры уравнений линейной, степенной, экспоненциальной, полулогарифмической, обратной, гиперболической парной регрессии.
3. Оценить тесноту связи с помощью показателей корреляции и детерминации.
4. дать с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.
5. Оценить с помощью средней ошибки аппроксимации качество уравнений.
6. Оценить с помощью F-критерия Фишера статистическую надежность результатов регрессионного моделирования. По значениям характеристик, рассчитанных в п.п. 4, 5 и данном пункте выбрать лучшее уравнение регрессии и дать его обоснование.
7. рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 15% от его среднего уровня. Определить доверительный интервал прогноза для уровня значимости .
Задание № 2.
По данным, взятым из соответствующей таблицы, выполнить следующие действия:
1. Построить линейное уравнение множественной регрессии и пояснить экономический смысл его параметров.
2. Рассчитать частные коэффициенты эластичности.
3. Определить стандартизованные коэффициенты регрессии.
4. Сделать вывод о силе связи результата и факторов.
5. Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделать выводы.
6. Дать оценку полученного уравнения на основе коэффициента детерминации и общего F-критерия Фишера.
7. Рассчитать прогнозное значение результата, если прогнозные значения факторов составляют 80% от их максимальных значений.
8. Рассчитать ошибки и доверительный интервал прогноза для уровня значимости 5 % (б=0,05).
9. Оценить полученные результаты, выводы оформить в аналитической записке.
Номер периода ВНП, млрд. руб., у Накопление, млрд. руб., х1 Среднегодовая численность занятых, млн. чел., х2
1 337,7 650 89,1
2 354,0 710 90,5
3 363,3 773 91,9
4 385,7 836 93,0
5 405,6 900 94,1
6 426,3 968 95,3
7 438,3 1040 96,1
8 462,2 1113 96,6
9 486,7 1190 97,5
10 523,4 1270 98,2
11 597,1 1403 99,0
12 601,1 1705 101,0
13 645,8 1806 103,1
14 698,2 1900 105,2
15 703,0 2010 107,0
1. Построить линейное уравнение множественной регрессии и пояснить экономический смысл его параметров.
2. Рассчитать частные коэффициенты эластичности
3. Определить стандартизованные коэффициенты регрессии
4. Сделать вывод и силе связи результата и факторов
5. Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделать выводы.
6. Дать оценку полученного уравнения на основе коэффициента детерминации и общего F-критерия Фишера.
7. Рассчитать прогнозное значение результата, если прогнозные значения факторов составляют 80% от их максимальных значений.
8. Рассчитать ошибки и доверительный интервал прогноза для уровня значимости 5% ( ).
9. Оценить полученные результаты. Выводы оформить в аналитической записке
Задание № 3.
По данным, взятым из соответствующей таблицы, выполнить следующие действия:
1. Построить график динамики.
2. Провести расчет параметров трендов разной формы.
3. Оценить качество каждого тренда через среднюю ошибку аппроксимации и коэффициент детерминации.
4. Оценить статистическую значимость трендов через F-критерий, а значимость параметров тренда – через t-критерий.
5. Выбрать лучшую форму тренда и выполнить точечный прогноз на 2012 год.
6. Оценить ошибку прогноза и построить доверительный интервал прогноза для уровня значимости 0,05.
7. Определить коэффициенты автокорреляции всех возможных порядков.
8. Построить автокорреляционной функцию временного ряда. Охарактеризовать структуру этого ряда.
Вариант № 5
Представлены сведения об уровне среднегодовых цен на каучук, поступивший на рынки Нью-Йорка из всех источников, амер. центы за фунт
Год Цена Год Цена
1980 21,1 1994 49,6
1981 18,0 1995 41,8
1982 18,1 1996 41,2
1983 35,1 1997 44,1
1984 39,7 1998 48,8
1985 29,8 1999 48,7
1986 39,5 2000 50,2
1987 41,5 2001 47,6
1988 49,9 2002 46,6
1989 64,2 2003 47,3
1990 73,4 2004 48,9
1991 56,9 2005 56,7
1992 45,3 2006 54,8
1993 56,1 2007 53,5
1. Построить график динамики.
2. Провести расчет параметров трендов разной формы.
3. Оценить качество каждого тренда через среднюю ошибку аппроксимации и коэффициент детерминации
4. Оценить статистическую значимость трендов через F-критерий, а значимость параметров тренда – через t-критерий.
5. Выбрать лучшую форму тренда и выполнить точечный прогноз на 2012 год.
Рассматривая полученные ранее результаты, можем сделать вывод, что лучше всего ряд динамики описывает полиномиальный тренд.
В 2012 году условное обозначение времени t=33.
6. Оценить ошибку прогноза и построить доверительный интервал прогноза для уровня значимости 0,05
7. Определить коэффициенты автокорреляции всех возможных порядков.
8. Построить автокорреляционную функцию временного ряда. Охарактеризовать структуру этого ряда.

»

Стоимость данной учебной работы: 585 руб.Учебная работа № 88615.  "Контрольная Эконометрика. Вариант 5, задачи 1-3
Форма заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским
    соглашением
    и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    Данные приведены в табл,1,4
    Таблица 1,4

    Мес,

    Задача 1

    Задача 2

    Задача 3

    Задача 4

    Задача 5

    y

    x

    y

    x

    y

    x

    y

    x

    y

    x

    1

    13,0

    37,0

    13,2

    37,2

    22,5

    46,0

    22,5

    29,0

    23,0

    22,8

    2

    16,4

    60,0

    15,9

    58,2

    25,5

    54,0

    25,8

    36,2

    26,8

    27,5

    3

    17,0

    60,9

    16,2

    60,8

    19,2

    50,2

    20,8

    28,9

    28,0

    34,5

    4

    15,2

    52,1

    15,4

    52,0

    13,5

    43,8

    15,2

    32,4

    18,4

    26,4

    5

    14,2

    40,1

    14,2

    44,6

    25,4

    78,6

    25,8

    49,7

    30,4

    19,8

    6

    10,5

    30,4

    11,0

    31,2

    17,8

    60,2

    19,4

    38,1

    20,8

    17,9

    7

    20,0

    43,0

    21,1

    26,4

    18,0

    50,2

    18,2

    30,0

    22,4

    25,2

    8

    12,0

    32,1

    13,2

    20,7

    21,0

    54,7

    21,0

    32,6

    21,8

    20,1

    9

    15,6

    35,1

    15,4

    22,4

    16,5

    42,8

    16,4

    27,5

    18,5

    20,7

    10

    12,5

    32,0

    12,8

    35,4

    23,0

    60,4

    23,5

    39,0

    23,5

    21,4

    11

    13,2

    33,0

    14,5

    28,4

    14,6

    47,2

    18,8

    27,5

    16,7

    19,8

    12

    14,6

    32,5

    15,1

    20,7

    14,2

    40,6

    17,5

    31,2

    20,4

    24,5

    Задание:
    Рассчитайте параметры уравнений регрессий и , Оцените тесноту связи с показателем корреляции и детерминации,
    Рассчитайте средний коэффициент эластичности и дайте сравнительную оценку силы связи фактора с результатом,
    Рассчитайте среднюю ошибку аппроксимации и оцените качество модели,
    С помощью F-статистики Фишера (при ) оцените надежность уравнения регрессии,
    Рассчитайте прогнозное значение , если прогнозное значение фактора увеличится на 5% от его среднего значения, Определите доверительный интервал прогноза для ,
    Расчеты должны быть подробны, как показано в примере 1, и сопровождены пояснениями,
    Решение
    Составим таблицу расчетов для линейной регрессии y = a + bx + е (таблица построена в MS Exсel),
    Таблица 1,

    x

    x2

    y

    xy

    y2

    y — ?

    x — x~

    (y — ?) 2

    (x — x~) 2

    y

    y — y

    (y — y) 2

    A (%)

    22,8

    519,84

    23

    524,4

    529

    0,44

    -0,58

    0, 20

    0,34

    22,37

    0,63

    0,40

    2,76

    27,5

    756,25

    26,8

    737

    718,2

    4,24

    4,12

    17,99

    16,95

    23,91

    2,89

    8,32

    10,77

    34,5

    1190,3

    28

    966

    784

    5,44

    11,12

    29,61

    123,58

    26,22

    1,78

    3,16

    6,35

    26,4

    696,96

    18,4

    485,8

    338,6

    -4,16

    3,02

    17,29

    9,10

    23,55

    -5,15

    26,55

    28,00

    19,8

    392,04

    30,4

    601,9

    924,2

    7,84

    -3,58

    61,49

    12,84

    21,38

    9,02

    81,40

    29,68

    17,9

    320,41

    20,8

    372,3

    432,6

    -1,76

    -5,48

    3,09

    30,07

    20,75

    0,05

    0,00

    0,23

    25,2

    635,04

    22,4

    564,5

    501,8

    -0,16

    1,82

    0,03

    3,30

    23,16

    -0,76

    0,57

    3,38

    20,1

    404,01

    21,8

    438,2

    475,2

    -0,76

    -3,28

    0,58

    10,78

    21,48

    0,32

    0,10

    1,48

    20,7

    428,49

    18,5

    383

    342,3

    -4,06

    -2,68

    16,47

    7, 20

    21,67

    -3,17

    10,08

    17,16

    21,4

    457,96

    23,5

    502,9

    552,3

    0,94

    -1,98

    0,89

    3,93

    21,90

    1,60

    2,54

    6,79

    19,8

    392,04

    16,7

    330,7

    278,9

    -5,86

    -3,58

    34,32

    12,84

    21,38

    -4,68

    21,88

    28,01

    24,5

    600,25

    20,4

    499,8

    416,2

    -2,16

    1,12

    4,66

    1,25

    22,93

    -2,53

    6,38

    12,38

    У

    280,6

    6793,5

    270,7

    6406

    6293

    0,00

    0,00

    186,61

    232,18

    0,00

    161,40

    146,99

    У/n

    23,38

    566,13

    22,56

    533,86

    524,43

    13,45

    12,25

    у

    4,399

    3,943

    у2

    19,35

    15,55

    Отсюда получаем коэффициенты a и b:
    То есть, уравнение линейной регрессии в нашем случае имеет вид:
    y = 14,85 + 0,3295•x,

    Рассчитаем коэффициент корреляции:
    rxy = b•уx / уy = 0,329 • 4,399/3,943 = 0,368

    Малое значение коэффициента корреляции означает, что связь между признаком y и фактором x плохая,
    Вычислим значение F-критерия Фишера:

    и сравним его с табличным при б=0,05, н1 = 1, н2 = 10: Fтабл = 2,228

    Поскольку Fтабл > F, то гипотеза H0 о статистической незначимости параметра b принимается,
    Средняя ошибка аппроксимации
    также выходит за допустимые пределы 8 — 10%, что опять говорит о низкой надежности модели,
    Попробуем для сравнения модель y = a + b•vx + е, Для нее таблица параметров имеет вид:
    Таблица 2 (начало)

    x

    u = ?x

    u2

    y

    uy

    y2

    17,9

    4,23

    17,90

    20,80

    88,00

    432,64

    19,8

    4,45

    19,80

    30,40

    135,27

    924,16

    19,8

    4,45

    19,80

    16,70

    74,31

    278,89

    20,1

    4,48

    20,10

    21,80

    97,74

    475,24

    20,7

    4,55

    20,70

    18,50

    84,17

    342,25

    21,4

    4,63

    21,40

    23,50

    108,71

    552,25

    22,8

    4,77

    22,80

    23,00

    109,82

    529,00

    24,5

    4,95

    24,50

    20,40

    100,97

    416,16

    25,2

    5,02

    25, 20

    22,40

    112,45

    501,76

    26,4

    5,14

    26,40

    18,40

    94,54

    338,56

    27,5

    5,24

    27,50

    26,80

    140,54

    718,24

    34,5

    5,87

    34,50

    28,00

    164,46

    784,00

    У

    57,79

    280,60

    270,70

    1310,99

    6293,15

    Среднее значение

    4,82

    23,38

    22,56

    109,25

    524,43

    Таблица 2 (окончание)

    y — ?

    u — ?

    (y — ?) 2

    (u — ?) 2

    y

    y — y

    (y — y) 2

    A (%)

    -1,76

    -0,58

    3,09

    0,34

    20,69

    0,11

    0,01

    0,55

    7,84

    -0,37

    61,49

    0,13

    21,39

    9,01

    81,25

    29,65

    -5,86

    -0,37

    34,32

    0,13

    21,39

    -4,69

    21,96

    28,06

    -0,76

    -0,33

    0,58

    0,11

    21,49

    0,31

    0,09

    1,41

    -4,06

    -0,27

    16,47

    0,07

    21,71

    -3,21

    10,28

    17,33

    0,94

    -0, 19

    0,89

    0,04

    21,95

    1,55

    2,40

    6,59

    0,44

    -0,04

    0, 20

    0,00

    22,43

    0,57

    0,33

    2,49

    -2,16

    0,13

    4,66

    0,02

    22,99

    -2,59

    6,69

    12,68

    -0,16

    0, 20

    0,03

    0,04

    23,21

    -0,81

    0,66

    3,62

    -4,16

    0,32

    17,29

    0,10

    23,59

    -5, 19

    26,94

    28,21

    4,24

    0,43

    17,99

    0,18

    23,93

    2,87

    8,24

    10,71

    5,44

    1,06

    29,61

    1,12

    25,95

    2,05

    4,22

    7,34

    У

    0,00

    0,00

    186,61

    2,30

    0,00

    163,08

    148,65

    У/n

    13,59

    12,39

    Здесь мы вводим переменную u = vx и получаем линейную модель относительно x и u:
    u = a + b•u + е,
    Найдем коэффициенты a и b:
    ,
    Рассчитаем коэффициент корреляции:
    ruy = b • уu /уy = 3, 203 • 0,437/ 3,943 = 0,355104

    Мы получили значение коэффициента корреляции еще хуже, чем в предыдущем случае,
    Проверим значение F-критерия Фишера:
    И снова расчетное значение еще хуже,
    Средняя о
    шибка аппроксимации также оказалась хуже, чем в линейной модели:
    Линейная модель оказалась надежнее (хотя тоже неудовлетворительная) и поэтому последующие расчеты мы будем делать для нее,
    Рассмотрим гипотезу H0 о статистической незначимости основных параметров модели: H0: {a = b = rxy = 0} и найдем для нее табличное значение распределения Стьюдента:
    tтабл (б =0,05, н = 10) = 2,228,

    Определим ошибки ma, mb и mr:
    Оценим значимость параметров:
    ta = a/ma = 7,139/6,27 = 2,368 > tтабл,
    tb = b/mb = 3, 202/0,2637 = 1,25 < tтабл tr = r/mr = 0,368/0,294 = 1,25 < tтабл Таким образом, параметры модели незначимо отличаются от нуля, и, следовательно, модель нельзя использовать для прогноза, Чтобы окончательно убедиться в этом, попробуем оценить доверительный интервал прогноза при отклонении хпрог от среднего значения на 5% для доверительной вероятности 0,01, Для yprog = a + b•xprog = 22,94,my = 4, 193, При б = 0,01 и n = 10 tтабл = 3,169,tтабл • my =13,29, Следовательно, доверительным интервалом будет (22,94 - 13,29, 22,94 +13,29) или 9,656 < yprog < 36,231, Таким образом, сделанный прогноз абсолютно ненадежен и совершенно неточен, Контрольное задание № 2 Задача 2 Имеются данные о деятельности крупнейших компаний в течение двенадцати месяцев 199Х года"

    Рейтинг@Mail.ru Яндекс.Метрика