Учебная работа № 88614. «Контрольная Эконометрика. Вариант 4, задача

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...
Контрольные рефераты

Учебная работа № 88614. «Контрольная Эконометрика. Вариант 4, задача

Количество страниц учебной работы: 9
Содержание:
»
Контрольная работа по эконометрике для студентов
Составил: доцент кафедры ЕМД Пасиков В.Л.
Вариант 4
В задачах приведены данные по группе хозяйств о дозах внесения удобрений на 1 га посева зерновых Требуется :
1) Рассчитать параметры линейного уравнения парной регрессии Y на X
2) Построить поле корелляции и оценить визуально тесноту связи экспериментальных точек
3) Рассчитать коэффициент корелляции и детерминации. Вычислить среднюю погрешность аппроксимации. Провести исследование тесноты связи по этим характеристикам.
4) Оценить качество уравнения регрессии по F- критериям Фишера.
5) Оценить статическую значимость коэффициентов регрессии и корелляции по t- критерию Стьюдента и доверительные интервалы каждого из показателей.
6) Выполнить прогноз урожайности уp при прогнозном значении дозы внесения удобрений x составляющим 110 % от среднего уровня.
7) Рассчитать параметры нелинейных регрессий степенной, показательной и равносторонней гиперболы и оценить каждую модель через среднюю погрешность аппроксимации А и F – критерий Фишера.
8) В приложении Microsoft Office Excel построить поля корреляции, линии тренда, уравнения регрессий и вычислить R2 во всех четырех случаях.
Х 4,2 2,7 2,4 1,2 3,3 3,0 1,3 2,5 1,4 2,6
у 34,2 24,4 29,1 23,2 40,3 31,1 19,5 28,5 18,0 32,4

»

Стоимость данной учебной работы: 585 руб.Учебная работа № 88614.  "Контрольная Эконометрика. Вариант 4, задача
Форма заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским
    соглашением
    и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    год
    1, Цель работы

    Цель контрольной работы — демонстрация полученных теоретических знаний и приобретенных практических навыков по эконометрике — как синтезу экономической теории, экономической статистики и математики, в том числе исследование линейных моделей парной (ЛМПР) и множественной регрессии (ЛММР), трендовых моделей, методом наименьших квадратов (МНК),
    Для проведения расчетов использовалось приложение к ПЭВМ типа EXCEL,
    2, Исследование линейных моделей парной (ЛМПР) и
    множественной регрессии (ЛММР) методом наименьших
    квадратов (МНК),

    2,1 Контрольная задача № 1

    2,1,1, Исследуем зависимость производительности труда Y (т/ч) от уровня механизации Х (%),
    Исходные данные для 14 однотипных предприятий приводятся в таблице 1:
    Таблица 1

    xi

    32

    30

    36

    40

    41

    47

    56

    54

    60

    55

    61

    67

    69

    76

    yi

    20

    24

    28

    30

    31

    33

    34

    37

    38

    40

    41

    43

    45

    48

    2,1,2 Матричная форма записи ЛМПР (ЛММР):
    Y^ = X* A^ (1), где А^ — вектор-столбец параметров регрессии;
    xi1 — предопределенные (объясняющие) переменные, n = 1;
    ранг матрицы X = n + 1= 2 < k = 14 (2), Исходные данные представляют в виде матриц, ( 1 32 ) (20 ) ( 1 30) (24 ) ( 1 36) (28 ) ( 1 40 ) (30 ) (1 41 ) (31 ) ( 1 47 ) (33) X = (1 56) Y = (34 ) (1 54) (37 ) (1 60 ) (38 ) (1 55 ) (40 ) ( 1 61 ) (41 ) ( 1 67 ) (43) (1 69 ) (45 ) ( 1 76 ) (48 ) Значение параметров А^ = (а0, а1) T и 2 - нам неизвестны и их требуется определить (статистически оценить) методом наименьших квадратов, Так как матрица Х, по условию, является прямоугольной, а обратную матрицу Х-1 можно рассчитать только для квадратной матрицы, то произведем небольшие преобразования матричного уравнения типаY = X *A, умножив левую и правую части на транспонированную матрицу Х Т, Получим XT* X * A^ = X T * Y , откуда A^ = (XT * X ) -1 *( XT * Y) (3), где (XT * X ) -1 - обратная матрица, 2,1,2, Решение, а) Найдем транспонированную матрицу ХТ : ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 ) XT = ( 32 30 36 40 41 47 56 54 60 55 61 67 69 76 ) в) Находим произведение матриц XT *X : ( 14 724 ) XT * X = ( 724 40134) г) Находим произведение матриц XT * Y: ( 492 ) XT * Y = ( 26907 ) д) Вычисляем обратную матрицу ( XT * X) -1 : ( 1,064562 -0,0192 ) ( XT * X) -1 = (-0,0192 0,000371) е) Умножаем обратную матрицу ( XT * X) -1 на произведение матриц (XT *Y) и получаем вектор- столбец A^ = (a 0 , a 1)T : ( 7,0361 ) A^ = ( XT * X) -1 * (XT * Y) = ( 0,543501), Уравнение парной регрессии имеет следующий вид: уi^ = 7,0361 + 0,543501* xi1 (4), уi^ (60) = 7,0361 + 0,543501*60 = 39, 646, 2,1,3 Оценка качества найденных параметров Для оценки качества параметров A применим коэффициент детерминации R2 , Величина R2 показывает, какая часть (доля) вариации зависимой переменной обусловлена объясняющей переменной, Чем ближе R2 к единице, тем лучше регрессия аппроксимирует экспериментальные данные, Q = ?(yi - y?)2 (5) - общая сумма квадратов отклонений зависимой переменной от средней; QR = ?(y^i - y?)2 (6) - сумма квадратов, обусловленная регрессией; Qе = ?(yi - y^i)2 (7) - остаточная сумма квадратов, характеризующая влияние неучтенных факторов; Q = QR + Qе (8), Q = 847,714; QR = 795,453; Qе = 52,261"

    Рейтинг@Mail.ru Яндекс.Метрика