Учебная работа № 86505. «Контрольная Эконометрика. 5 задач. Вариант №5

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...
Контрольные рефераты

Учебная работа № 86505. «Контрольная Эконометрика. 5 задач. Вариант №5

Количество страниц учебной работы: 19
Содержание:
«Вариант 5. 1
Задача 1. 1
Имеются данные по группам предприятий за отчетный период о зависимости себестоимости единицы продукции от величины выпуска продукции:
1) Постройте поле корреляции результата и фактора и сформулируйте гипотезу о форме связи.
2) Определите параметры уравнений парной линейной регрессии и дайте интерпретацию коэффициента регрессии b. Рассчитайте линейный коэффициент корреляции и поясните его смысл. Определите коэффициент детерминации и дайте его интерпретацию.
3) С вероятностью 0,95 оцените статистическую значимость коэффициента регрессии b и уравнения регрессии в целом. Сделайте выводы.
4) С вероятностью 0,95 постройте доверительный интервал ожидаемого значения результативного признака, если факторный признак увеличится на 5% от своего среднего значения.

Задача 2. 6
Получены данные о ценах и дивидендах по обыкновенным акциям, а также о доходности капитала компании:
1. Постройте линейное уравнение множественной регрессии и поясните экономический смысл его параметров
2. Определите парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции, сделайте выводы.
3. Дайте оценку полученного уравнения на основе коэффициента детерминации и общего F-критерия Фишера.

Задача 3. 10
Для прогнозирования спроса на продукцию на основе общей экономической ситуации в регионе фирма использует следующую модель:
Qt = a0 + a1Yt + u1,
Ct = b0 + b1Yt + u2,
It = c0 + c1(Yt-1 – Kt-1) + u3,
Yt = Ct + It,
Kt = Kt-1 + It,
где Qt – реализованная продукция в период t; Yt, Yt-1 – валовая добавленная стоимость в периоды t и t-1; It – валовые инвестиции в регион в году t; Ct – расходы на конечное потребление в регионе в период t; Kt, Kt-1 – реальный запас капитала в регионе на конец периода t и t-1 соответственно; u1, u2, u3 – случайные ошибки.
Проверим с помощью порядкового условия идентификации, идентифицирована ли данная модель.

Задача 4. 13
Имеются следующие данные о базисных темпах роста среднедушевого дохода населения области за 10 месяцев (в процентах к январю месяцу):
1) Определите коэффициент автокорреляции первого порядка и дайте его интерпретацию.
2) Обоснуйте выбор вида уравнения тренда и определите его параметры.
3) Дайте прогноз темпов роста среднедушевого дохода населения на ближайший следующий месяц. Постройте доверительный интервал прогноза.

Задача 5. 17
Администрация компании XYZ проводит анализ кадровой политики. В частности, требуется определить зависит ли общий объем продаж от удельного веса женщин среди работников компании. Были получены следующие данные за последние 9 кварталов:
Результаты аналитического выравнивания привели к получению для временного ряда объема продаж следующее уравнение тренда:
1) Определите коэффициент корреляции между временными рядами объема продаж компании и удельного веса женщин среди работников компании: по исходным уровням ряда.
2) Построить линию тренда для второго ряда и
3) Определите коэффициент корреляции между временными рядами объема продаж компании и удельного веса женщин среди работников компании по отклонениям от указанного выше линейного и полученного трендов.
»

Стоимость данной учебной работы: 585 руб.Учебная работа № 86505.  "Контрольная Эконометрика. 5 задач. Вариант №5
Форма заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским
    соглашением
    и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    А, Юркова
    Владивосток 2012
    Задача №1,
    По семи территориям Уральского района, За 199Х г, известны значения двух признаков (табл, 1,),
    Таблица 1

    Район

    Расходы на покупку продовольственных товаров в общих расходах, %, у

    Среднедневная заработная плата одного работающего, руб,, х

    Удмуртская респ,

    69,8

    44,1

    Свердловская обл,

    63

    58

    Башкортостан

    60,9

    55,7

    Челябинская обл,

    57,7

    60,8

    Пермская обл,

    56

    57,8

    Курганская обл,

    55,8

    46,2

    Оренбургская обл,

    50,3

    53,7

    Требуется:
    1, Для характеристики зависимости у от х рассчитать параметры следующих функций:
    а) линейной;
    б) степенной;
    в) показательной; 1
    г) равносторонней гиперболы (также нужно придумать как предварительно линеаризовать данную модель),
    2, Оценить каждую модель через среднюю ошибку аппроксимации и F-критерий Фишера,
    Решение задачи
    1а, Для расчета параметров a и b линейной регрессии y=a+b*x, Решаем систему нормальных уравнений относительно a и b:

    По исходным данным рассчитываем
    Таблица 1,2

    y

    x

    yx

    x2

    y2

    Ai

    1

    69,8

    44,1

    3078,18

    1944,81

    4872,04

    62,411

    7,4

    10,6

    2

    62,7

    58

    3636,6

    3364

    3931,29

    57,546

    5,2

    8,3

    3

    60,9

    55,7

    3392,13

    3102,49

    3708,81

    58,551

    2,5

    4,1

    4

    57,7

    60,8

    3508,16

    3696,64

    3329,29

    56,566

    1,1

    1,9

    5

    56

    57,8

    3236,8

    3340,84

    3136

    57,616

    -1,6

    2,9

    6

    55,8

    46,2

    2577,96

    2134,44

    3113,64

    61,676

    -5,9

    10,6

    7

    50,3

    53,7

    2701,11

    2883,69

    2530,09

    89,051

    -8,8

    17,4

    итого

    413,2

    376,3

    22130,94

    20466,91

    24621,16

    55,8

    Среднее значение

    59,03

    53,76

    3161,56

    2923,84

    3517,31

    7,97

    5,72

    5,81

    2

    32,77

    33,70

    ; ;
    ;
    ;
    b=
    =59,03- (-0, 35)53,76=77,846
    Уравнение регрессии: =77,846-0,35x, С увеличением среднедневной заработной платы на 1 руб, доля расходов на покупку продовольственных товаров снижается в среднем на 0,35%-ых пункта, Рассчитаем линейный коэффициент парной корреляции:
    = =-0,357
    Связь умеренно обратная,
    Определим коэффициент детерминации:
    2 =(-0,35)2 =0,127
    Вариация результата на 12,7% объясняется вариацией фактора x, Подставляя в уравнение регрессии фактические значения x, определим теоретические(расчетные) значения , Найдем величину средней ошибки аппроксимации :
    = = %
    В среднем расчетные значения отклоняются от фактических на 7,97%
    Рассчитаем F- критерий
    F=
    Полученное значение указывает на необходимость принять гипотезу H0 о случайной природе зависимости и статистической незначимости параметров уравнения и показателя тесноты связи,
    1б, Построению степенной модели y= xb предшествует процедура линеаризации переменных,
    В примере линеаризация производится путем логарифмирования обеих частей уравнения:
    log y=log+b log x
    Y=C+b X,
    Где Y=log y, X=log x, C=log
    Для расчетов используем данные таблицы 1″

    Рейтинг@Mail.ru Яндекс.Метрика