Учебная работа № 86500. «Контрольная Эконометрика. 2 задачи. Вариант №3

1 Звезда2 Звезды3 Звезды4 Звезды5 Звезд (Пока оценок нет)
Загрузка...
Контрольные рефераты

Учебная работа № 86500. «Контрольная Эконометрика. 2 задачи. Вариант №3

Количество страниц учебной работы: 15
Содержание:
«Задание 1. 1
По данным, взятым из соответствующей таблицы, выполнить следующие действия:
1. Построить поле корреляции и сформулировать гипотезу о форме связи.
2. Рассчитать параметры уравнения парной регрессии.
3. Оценить тесноту связи с помощью показателей корреляции и детерминации.
4. Дать с помощью среднего (общего) коэффициента эластичности сравнительную оценку силы связи фактора с результатом.
5. Оценить с помощью средней ошибки аппроксимации качество уравнений.
6. Оценить с помощью F –критерия Фишера статистическую надежность результатов регрессионного моделирования. По значениям характеристик, рассчитанных в пунктах 4,5 и данном пункте, выбрать лучшее уравнение регрессии и дать его обоснование.
7. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 15% от его среднего уровня. Определить доверительный интервал прогноза для уровня значимости ?=0,05.
8. Оценить полученные результаты, выводы оформить в аналитической записке.
Год Фактическое конечное потребление домашних хозяйств (в текущих ценах), млрд. руб. (1995 г. — трлн. руб.), y Реальный размер назначенных пенсий, млрд.руб., х
2000 3813 87,9
2001 5014 95,6
2002 6400 106,2
2003 7708 122,2
2004 9848 135
2005 12455 151,7
2006 15284 172,2
2007 18928 193
2008 23695 197,5
2009 25151 201,7

Задача 2. 9
По данным, взятым из соответствующей таблицы, выполнить следующие действия:
1. Построить линейное уравнение множественной регрессии и пояснить экономический смысл его параметров.
2. Рассчитать частные коэффициенты эластичности.
3. Определить стандартизованные коэффициенты регрессии. Написать уравнение регрессии в стандартизованном масштабе
4. Сделать вывод о силе связи результата и факторов
5. Определить парные и частные коэффициенты корреляции, а также множественный коэффициент корреляции; сделать выводы.
6. Написать частные уравнения регрессии.
7. Дать оценку полученного уравнения на основе коэффициента детерминации и общего F –критерия.
8. Рассчитать прогнозное значение результата, если прогнозное значение факторов составляет 80% от их максимальных значений.
9. Рассчитать ошибки и доверительный интервал прогноза для уровня значимости5 или 10% (?=0,05; ?=0,10).
10. Оценить полученные результаты, выводы оформить в аналитической записке.

Литература 15
»

Стоимость данной учебной работы: 585 руб.Учебная работа № 86500.  "Контрольная Эконометрика. 2 задачи. Вариант №3
Форма заказа готовой работы

    Укажите Ваш e-mail (обязательно)! ПРОВЕРЯЙТЕ пожалуйста правильность написания своего адреса!

    Укажите № работы и вариант

    Соглашение * (обязательно) Федеральный закон ФЗ-152 от 07.02.2017 N 13-ФЗ
    Я ознакомился с Пользовательским
    соглашением
    и даю согласие на обработку своих персональных данных.

    Выдержка из похожей работы

    А, Юркова
    Владивосток 2012
    Задача №1,
    По семи территориям Уральского района, За 199Х г, известны значения двух признаков (табл, 1,),
    Таблица 1

    Район

    Расходы на покупку продовольственных товаров в общих расходах, %, у

    Среднедневная заработная плата одного работающего, руб,, х

    Удмуртская респ,

    69,8

    44,1

    Свердловская обл,

    63

    58

    Башкортостан

    60,9

    55,7

    Челябинская обл,

    57,7

    60,8

    Пермская обл,

    56

    57,8

    Курганская обл,

    55,8

    46,2

    Оренбургская обл,

    50,3

    53,7

    Требуется:
    1, Для характеристики зависимости у от х рассчитать параметры следующих функций:
    а) линейной;
    б) степенной;
    в) показательной; 1
    г) равносторонней гиперболы (также нужно придумать как предварительно линеаризовать данную модель),
    2, Оценить каждую модель через среднюю ошибку аппроксимации и F-критерий Фишера,
    Решение задачи
    1а, Для расчета параметров a и b линейной регрессии y=a+b*x, Решаем систему нормальных уравнений относительно a и b:

    По исходным данным рассчитываем
    Таблица 1,2

    y

    x

    yx

    x2

    y2

    Ai

    1

    69,8

    44,1

    3078,18

    1944,81

    4872,04

    62,411

    7,4

    10,6

    2

    62,7

    58

    3636,6

    3364

    3931,29

    57,546

    5,2

    8,3

    3

    60,9

    55,7

    3392,13

    3102,49

    3708,81

    58,551

    2,5

    4,1

    4

    57,7

    60,8

    3508,16

    3696,64

    3329,29

    56,566

    1,1

    1,9

    5

    56

    57,8

    3236,8

    3340,84

    3136

    57,616

    -1,6

    2,9

    6

    55,8

    46,2

    2577,96

    2134,44

    3113,64

    61,676

    -5,9

    10,6

    7

    50,3

    53,7

    2701,11

    2883,69

    2530,09

    89,051

    -8,8

    17,4

    итого

    413,2

    376,3

    22130,94

    20466,91

    24621,16

    55,8

    Среднее значение

    59,03

    53,76

    3161,56

    2923,84

    3517,31

    7,97

    5,72

    5,81

    2

    32,77

    33,70

    ; ;
    ;
    ;
    b=
    =59,03- (-0, 35)53,76=77,846
    Уравнение регрессии: =77,846-0,35x, С увеличением среднедневной заработной платы на 1 руб, доля расходов на покупку продовольственных товаров снижается в среднем на 0,35%-ых пункта, Рассчитаем линейный коэффициент парной корреляции:
    = =-0,357
    Связь умеренно обратная,
    Определим коэффициент детерминации:
    2 =(-0,35)2 =0,127
    Вариация результата на 12,7% объясняется вариацией фактора x, Подставляя в уравнение регрессии фактические значения x, определим теоретические(расчетные) значения , Найдем величину средней ошибки аппроксимации :
    = = %
    В среднем расчетные значения отклоняются от фактических на 7,97%
    Рассчитаем F- критерий
    F=
    Полученное значение указывает на необходимость принять гипотезу H0 о случайной природе зависимости и статистической незначимости параметров уравнения и показателя тесноты связи,
    1б, Построению степенной модели y= xb предшествует процедура линеаризации переменных,
    В примере линеаризация производится путем логарифмирования обеих частей уравнения:
    log y=log+b log x
    Y=C+b X,
    Где Y=log y, X=log x, C=log
    Для расчетов используем данные таблицы 1″

    Рейтинг@Mail.ru Яндекс.Метрика